c-18

Chapter 2 Programming Language Syntax

Figure 1.35 NFA corresponding to the DFA of Figure C-2.34.

Our construction would yield a very large NFA for this expression, but clearly
many orders of magnitude smaller than ten billion states!

24.2 Push-Down Automata

A deterministic push-down automaton (DPDA) N consists of (1) Q, (2) %, (3)
q1, and (4) F, as in a DFA, plus (6) a finite alphabet I" of stack symbols, (7) a
distinguished initial stack symbol Z; € T', and (5’) a transition function ¢ : Q X
I'x{ZU{e}} — QxI'*, where I'* is the set of strings of zero or more symbols from
I'. N begins in state q;, with symbol Z; in an otherwise empty stack. It repeatedly
examines the current state q and top-of-stack symbol Z. If §(q.e, Z) is defined,
N moves to state r and replaces Z with « in the stack, where (r,) = d(q,¢,2).
In this case N does not consume its input symbol. If 6(q,¢,Z) is undefined, N
examines and consumes the current input symbol a. It then moves to state s and
replaces Z with 3, where (s, 5) = d(q, a,Z). N is interpreted as accepting a string
of input symbols if and only if it consumes the symbols and ends in a state in F.

As with finite automata, a nondeterministic push-down automaton (NPDA) is
distinguished by a multivalued transition function: an NPDA can choose any of
a set of new states and stack symbol replacements when faced with a given state,
input, and top-of-stack symbol. If §(q,¢, Z) is nonempty, N can also choose a new
state and stack symbol replacement without inspecting or consuming its current
input symbol. While we have seen that nondeterministic and deterministic finite
automata are equally powerful, this correspondence does not carry over to push-
down automata: there are context-free languages that are accepted by an NPDA
but not by any DPDA.

The proof that CFGs and NPDAs are equivalent in expressive power is more
complex than the corresponding proof for regular expressions and finite au-
tomata. The proof is also of limited practical importance for compiler construc-
tion; we do not present it here. While it is possible to create an NPDA for any

EXAMPLE 260

0"1" is not a regular
language

2.4.3 Grammar and Language Classes c-19

CFL, simulating that NPDA may in some cases require exponential time to rec-
ognize strings in the language. (The O(n?) algorithms mentioned in Section 2.3
do not take the form of PDAs.) Practical programming languages can all be ex-
pressed with LL or LR grammars, which can be parsed with a (deterministic) PDA
in linear time.

An LL(1) PDA is very simple. Because it makes decisions solely on the basis
of the current input token and top-of-stack symbol, its state diagram is trivial.
All but one of the transitions is a self-loop from the initial state to itself. A final
transition moves from the initial state to a second, final state when it sees $$ on
the input and the stack. As we noted in Section 2.3.4, the state diagram for an
SLR(1) or LALR(1) parser is substantially more interesting: it’s the characteris-
tic finite-state machine (CFSM). Full LR(1) parsers have similar machines, but
usually with many more states, due to the need for path-specific look-ahead.

A little study reveals that if we define every state to be accepting, then the
CFSM, without its stack, is a DFA that recognizes the grammar’s viable prefixes.
These are all the strings of grammar symbols that can begin a sentential form in
the canonical (right-most) derivation of some string in the language, and that do
not extend beyond the end of the handle. The algorithms to construct LL(1) and
SLR(1) PDAs from suitable grammars were given in Sections 2.3.3 and 2.3.4.

14.3 Grammar and Language Classes

As we noted in Section 2.1.2, a scanner is incapable of recognizing arbitrarily
nested constructs. The key to the proofis to realize that we cannot count an arbi-
trary number of left-bracketing symbols with a finite number of states. Consider,
for example, the problem of accepting the language 0" 1". Suppose there is a DFA
M that accepts this language. Suppose further that M has m states. Now suppose
we feed M a string of m + 1 zeros. By the pigeonhole principle (you can’t distribute
m objects among p < m pigeonholes without putting at least two objects in some
pigeonhole), M must enter some state g; twice while scanning this string. With-
out loss of generality, let us assume it does so after seeing j zeros and again after
seeing k zeros, for j # k. Since we know that M accepts the string 01/ and the
string 0%1%, and since it is in precisely the same state after reading 0/ and 0¥, we
can deduce that M must also accept the strings 0/ 1¥ and 0¥ 1/. Since these strings
are not in the language, we have a contradiction: M cannot exist.

Within the family of context-free languages, one can prove similar theorems
about the constructs that can and cannot be recognized using various parsing
algorithms. Though almost all real parsers get by with a single token of look-
ahead, it is possible in principle to use more than one, thereby expanding the set
of grammars that can be parsed in linear time. In the top-down case we can rede-
fine FIRST and FOLLOW sets to contain pairs of tokens in a more or less straight-
forward fashion. If we do this, however, we encounter a more serious version of
the immediate error detection problem described in Section C-2.3.5. There we
saw that the use of context-independent FOLLOW sets could cause us to overlook

c-20 Chapter 2 Programming Language Syntax

EXAMPLE 2.6'

Separation of grammar
classes

EXAMPLE 2.62

Separation of language
classes

a syntax error until after we had needlessly predicted one or more epsilon pro-
ductions. Context-specific FOLLOW sets solved the problem, but did not change
the set of valid programs that could be parsed with one token of look-ahead. If
we define LL(k) to be the set of all grammars that can be parsed predictively us-
ing the top-of-stack symbol and k tokens of look-ahead, then it turns out that for
k > 1 we must adopt a context-specific notion of FOLLOW sets in order to parse
correctly. The algorithm of Section 2.3.3, which is based on context-independent
FOLLOW sets, is actually known as SLL (simple LL), rather than true LL. For
k =1, the LL(1) and SLL(1) algorithms can parse the same set of grammars. For
k > 1, LL is strictly more powerful. Among the bottom-up parsers, the relation-
ships among SLR(k), LALR(k), and LR(k) are somewhat more complicated, but
extra look-ahead always helps.

Containment relationships among the classes of grammars accepted by popu-
lar linear-time algorithms appear in Figure C-2.36. The LR class (no suffix) con-
tains every grammar G for which there exists a k such that G € LR(k); LL, SLL,
SLR, and LALR are similarly defined. Grammars can be found in every region of
the figure. Examples appear in Figure C-2.37. Proofs that they lie in the regions
claimed are deferred to Exercise C-2.35.

For any context-free grammar G and parsing algorithm P, we say that Gis a P
grammar (e.g., an LL(1) grammar) if it can be parsed using that algorithm. By ex-
tension, for any context-free language L, we say that L is a P language if there exists
a P grammar for L (this may not be the grammar we were given). Containment
relationships among the classes of languages accepted by the popular parsing al-
gorithms appear in Figure C-2.38. Again, languages can be found in every region.
Examples appear in Figure C-2.39; proofs are deferred to Exercise C-2.36.

Note that every context-free language that can be parsed deterministically has
an SLR(1) grammar. Moreover, any language that can be parsed deterministically
and in which no valid string can be extended to create another valid string (this
is called the prefix property) has an LR(0) grammar. If we restrict our attention to
languages with an explicit $$ marker at end-of-file, then they all have the prefix
property, and therefore LR(0) grammars.

The relationships among language classes are not as rich as the relationships
among grammar classes. Most real programming languages can be parsed by any
of the popular parsing algorithms, though the grammars are not always pretty,
and special-purpose “hacks” may sometimes be required when a language is al-
most, but not quite, in a given class. The principal advantage of the more pow-
erful parsing algorithms (e.g., full LR) is that they can parse a wider variety of
grammars for a given language. In practice this flexibility makes it easier for the
compiler writer to find a grammar that is intuitive and readable, and that facili-
tates the creation of semantic action routines.

2.4.3 Grammar and Language Classes c-21

—

Figure 236 Containment relationships among popular grammar classes. In addition to the
containments shown, SLL(k) is just inside LL(k), for k > 2, but has the same relationship to
everything else, and SLR(k) is just inside LALR(k), for k > 1, but has the same relationship to
everything else.

LL(2) but not SLL: SLL(k) and SLR(k) but not LR(k — 1):
S—>aAa|bAba S*>Aak71b|Bakflc
A — b|e A — €

B — ¢
SLL(k) but not LL(k — 1):
S — aF T p|af LALR(1) but not SLR:
S— bADb|Ac|ab

LR(0) but not LL: A —s a
S — Ab
A— Aala LR(1) but not LALR:

S— aCalbCb|aDb|bDa

SLL(1) but not LALR:

S— Aa|Bb|cC C — ¢

C— Ab|Ba D — ¢

A — D

B - D Unambiguous but not LR:
D — ¢ S— aSale

Figure 13T Examples of grammars in various regions of Figure C-2.36.

c-22

Chapter 2 Programming Language Syntax

Inherently Nondeterministic
ambiguous context-free

LL=SLL
SLR(1) = LR

= deterministic
h context-free

LL(2) = SLL(2)

)

LL(1) = SLL(1) LR(0)

= deterministic context-free
with prefix property

Figure 1.38 Containment relationships among popular language classes.

Nondeterministic language:
{a"v"c:n>1}U {a”bznd in> 1}

Inherently ambiguous language:
{aibjck ri=jorj=k;i,jk>1}

Language with LL(k) grammar but no LL(k—1) grammar:
{a"(b | c|ba)":n>1}

Language with LR(0) grammar but no LL grammar:
{a"v":n>1}u{a"c":n>1}

Figure 139 Examples of languages in various regions of Figure C-2.38.

\/CHECK YOUR UNDERSTANDING

56. What formal machine captures the behavior of a scanner? A parser?
51. State three ways in which a real scanner differs from the formal machine.

58. What are the formal components of a DFA?

59.

60.

6l.
62.
63.

64.
05.
66.
61.

2.4.3 Grammar and Language Classes c-23

Outline the algorithm used to construct a regular expression equivalent to a
given DFA.

What is the inherent “big-O” complexity of parsing with a simulated NPDA?
Why is this worse than the O(n*) time mentioned in Section 2.3?

How many states are there in an LL(1) PDA? An SLR(1) PDA? Explain.
What are the viable prefixes of a CFG?

Summarize the proof that a DFA cannot recognize arbitrarily nested con-
structs.

Explain the difference between LL and SLL parsing.
Is every LL(1) grammar also LR(1)? Is it LALR(1)?
Does every LR language have an SLR(1) grammar?

Why are the containment relationships among grammar classes more com-
plex than those among language classes?

