
Type Checking Exercises
CS 4610 — Spring 2017

This Review Set asks you to prepare written answers to questions on type checking. Each of the questions has a short
answer. You may discuss this Review Set with other students and work on the problems together.

1 Definitions and Background

1. Define the following terms and give examples where appropriate.

(a) Semantic Analysis:

(b) Variable Declaration:

(c) Variable Definition:

(d) Scoping Rules:

(e) Symbol Table:

(f) Type:

(g) Type System:

(h) Type Checking:

(i) Type Inference:

(j) Soundness:

1



(k) Type Environment:

(l) Free Variable:

(m) Dynamic Type:

(n) Static Type:

2. Describe some key differences between statically- and dynamically-typed languages. What are some advantages of
each approach?

2



2 Type Checking

1. C++, unlike COOL, supports multiple inheritance. For example, the following class hierarchy is legal in C++:

A

/ \

B C

\ /

D

Allowing multiple inheritance changes the way we define and use the least upper bound (lub) function on types.

(a) Explain, using at least one example, why it is necessary to change lub.

(b) Describe how you might implement lub for multiple inheritance. Be brief.

3



2. The Java programming language includes arrays. The Java language specification states that if s is an array of
elements of class S, and t is an array of elements of class T , then the assignment s = t is allowed as long as T is
a subclass of S.

This typing rule for array assignments turns out to be unsound. Java works around this by inserting runtime checks
to throw an exception if arrays are used unsafely.

Consider the following Java program, which type checks according to the preceeding rule:

1 class Mammal { String name; }

2

3 class Dog extends Mammal {

4 void beginBarking () { ... }

5 }

6

7 class Main {

8 public static void main(String argv []) {

9 Dog x[] = new Dog [5];

10 Mammal y[] = x;

11

12 // Insert your code here

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42 }

43 }

Add code to the main method so that the resulting program is a valid Java program (i.e., it compiles), but running
that program triggers one of the aforementioned runtime checks. Include a brief explanation of how your program
exhibits the problem.

4



3. The following typing judgments have one or more flaws. For each judgment, list the flaws and explain how they
affect the judgment.

(a)
O ` e0 : T
O ` T ≤ T0

O ` e1 : T1

O[x/T0] ` let x : T0 ← e0 in e1 : T1
(let− init)

(b)
O(id) = T0

O ` e1 : T1

T0 ≤ T1

O ` id← e1 : T1
(assign)

(c)
T ≤ C

` SELF TYPEC ≤ T
(self − type)

5



(d)
O,M,C ` e0 : T0

. . .
O,M,C ` en : Tn

T0 ≤ T
M(T0, f) = (T ′

1, . . . , T
′
n, T

′
n+1)

T ′
n+1 6= SELF TYPE
∀1 ≤ i ≤ n . Ti ≤ T ′

i

O,M,C ` e0@T.f(e1, . . . , en) : T
′
n+1

(static− dispatch− self)

4. Draw the AST for the following Cool snippet and annotate each node with its associated type (following the Cool
typing rules). You may assume that class E has been defined an that it has a function set var, which has a single
formal parameter of type Int.

1 let num : Int <- in_int () in

2 let x : Int <- 1 in

3 {

4 (let y : Int <- 1 in

5 while y <= num loop

6 {

7 x <- x * y;

8 y <- y + 1;

9 }

10 pool

11 );

12 (new E).set_var(x);

13 }

6


