
Debuggers and Concurrency Exercises
CS 4610 — Spring 2017

This Review Set asks you to prepare written answers to questions on debuggers and concurrency. Each of the questions
has a short answer. You may discuss this Review Set with other students and work on the problems together.

1 Debuggers

1. Recall that a compiler can generate several mappings to help support breakpoints and single-stepping in high-level
source code (e.g. Cool). Use the list.cl example code to formulate answers for the following parts. You can use
the --asm flag to the reference compiler to generate Cool assembly.

(a) Create a mapping from Cool source code line number to ranges of Cool assembly for each executable line in
the Main class.

(b) Create a mapping from Cool source code line number to in-scope variables for each executable line in the
Main class. If you’re feeling bold, also include the locations (in memory or registers) for each variable as well.

1

2. It can be nice to step backwards through code sometimes. For example, you might single-step “too far” and wish to
go back one line. Unfortunately, it is difficult to “undo” instructions because of side-effects. Using your knowledge
of debugger implementation, describe how you would implement a debugger that gives the illusion of “stepping
backwards”. (Hint: This feature is often called replay debugging.)

2 Concurrency

1. One way to gain parallelism in a program is to identify loops in which there are no dependencies between iterations.
These loops iterations can be executed in parallel. Suppose we wish to implement a custom language structure to
capture this parallelism:

1 parallel_for(Foo x : Collection <Foo >) {

2 ... body ...

3 }

This parallel for performs the same computation on x for each value in the collection. Propose two different
techniques for using fork/join task creation to spawn tasks to perform each loop iteration in parallel. Which of
your proposed techniques is more efficient? Why?

2

2. Consider the following function written in the Cilk language:

1 int fib(int n)

2 {

3 if (n < 2)

4 return n;

5 int x = cilk_spawn fib(n-1);

6 int y = fib(n-2);

7 cilk_sync;

8 return x + y;

9 }

Draw a directed acyclic graph (DAG) for a call to fib(5) (fork/join operations are indicated by nodes; all other
instructions are on edges). How many strands are there?

3. Explain why big-step operational semantics (the kind of semantics used to describe the Cool language) are not
sufficient for modeling concurrency. What is one approach that provides a better model?

3

