
Context-Free Grammar Exercises
CS 4610 — Spring 2017

This Review Set asks you to prepare written answers to questions on context-free grammars. Each of the questions has
a short answer. You may discuss this Review Set with other students and work on the problems together.

1 Definitions and Background

1. Define the following terms and give examples where appropriate.

(a) Context-Free Grammar:

(b) Non-terminal:

(c) Terminal:

(d) Language of a Context-Free Grammar:

(e) Derivation:

(f) Parse Tree:

(g) Ambiguous Grammar:

(h) Left-Recursive Grammar:

1

2 Context-Free Grammars

1. Let L1 be the language consisting of all non-empty palindromes over the alphabet Σ = {a, b}. That is, L1 consists
of all sequences of a’s and b’s that read the same forward or backward. For example, aba ∈ L1 and and bb ∈ L1

and aabbbaa ∈ L1, but abb /∈ L1.

Let L2 be the language over Σ = {a, b} denoted by the regular expression a(a|b)*.

(a) Write a context-free grammar for L1.

(b) Draw a parse tree for the string ababa using your grammar from the previous part.

(c) The language L3 = L1 ∩ L2 is context-free. A string s is in L3 if s ∈ L1 and s ∈ L2. Write a context-free
grammar for the language L3.

Optional Thing To Think About: Is the intersection of a context-free language and a regular language
always context-free?

2

2. Consider the following grammar:

S → aSb

S → Sb

S → ε

(a) Give a one-sentence description of the language generated by this grammar.

(b) Show that this grammar is ambiguous by giving a single string that can be parsed in two different ways. Draw
both parse trees.

(c) Give an unambiguous grammar that accepts the same language as the grammar above.

3

3. Using the context-free grammar for Cool given in the Cool Reference Manual, draw a parse tree for the following
expression.

while not (x <- z <- 0) loop

y <- z + 2 * x + 1

pool

Note that the context-free grammar by itself is ambiguous, so you will need to refer to the precedence and
associativity rules to get the correct tree.

4

4. Consider the following grammar:

E → E + T

E → T

T → T * F

T → F

F → (E)

F → x

F → y

(a) Why couldn’t a recursive descent parser use this grammar to recognize token sequences?

(b) Rewrite the grammar in such a way that a recursive descent parser could successfully use the resulting grammar.

5

