CS 4610 — Midterm 1

e Write your name and UVa ID on the exam. Pledge the exam before turning it
n.

e There are 9 pages in this exam (including this one) and 6 questions, each with multiple
parts. Some questions span multiple pages. All questions have some easy parts and
some hard parts. If you get stuck on a question move on and come back to it later.

e You have 1 hour and 20 minutes to work on the exam.
e The exam is closed book, but you may refer to your two page-sides of notes.

e Even vaguely looking at a cellphone or similar device (e.g., tablet computer) during
this exam is cheating.

e Please write your answers in the space provided on the exam, and clearly mark your
solutions. You may use the backs of the exam pages as scratch paper. Please do not
use any additional scratch paper.

e Solutions will be graded on correctness and clarity. Each problem has a relatively
simple and straightforward solution. We might deduct points if your solution is far
more complicated than necessary. Partial solutions will be graded for partial credit.

— Good Writing Fxample: Python and Ruby have implemented some Smalltalk-
inspired ideas with a more C-like syntax.

— Bad Writing Example: Im in ur class, Qcing ur t3stz!1!

e [f you leave a non-extra-credit portion of the exam blank, you will receive one-third
of the points for that portion (rounded down) for not wasting our time. If
you randomly guess and throw likely words at us, we will be much less sanguine.

UVa ID:
NAME (print):

UV& ID (yes, again!)

’ Problem Max points ‘ Points ‘

1 — Compiler Stages 14
2 — OCaml Functional Programming 13
3 — Python Functional Programming 8

4 — Regular Expressions 19

Honor Pledge:

5 — Ambiguity 14
6 — Earley Parsing 32
Extra Credit 0

TOTAL 100

How do you think you did?

Page 2

1 Compiler Stages (14 points)

The following diagram shows the stages of a compiler. Label each of the eleven unlabeled
diagram elements. Each unlabeled element is either a generating tool used in compiler
construction, a representation of the subject program, a stage of the compiler, or a formalism
used to guide or generate a stage of the compiler. Compiler stages are worth two points each,

all other blanks are worth one point each.

Machine
Description

Annotated
Abstract
Syntax

Tree

Page 3

2 OCaml Functional Programming (13 points)

Consider the following OCaml functions. The functions are correct and behave as specified;
these are all direct copies of standard library functions.

let is_even n = (n mod 2) = 0 (* returns true if the argument n is even x*)
(* map f [al; ...; an] applies function f to al, ..., an, and builds

the list [f al; ...; f an] with the results returned by f. *)
let rec map f 1st = match 1st with

| [1 -> []

| hd :: tl -> (f hd) :: (map f tl)

(x filter p 1 returns all the elements of the list 1

that satisfy the predicate p. *)
let rec filter p 1 = match 1 with

I 1 -> [

| hd :: t1 -> if p hd then hd :: (filter p tl) else (filter p tl)
(x fold_left f a [bil; .; bnl]] is £ (... (f (f a bl) b2) ...) bn. *)
let rec fold_left f accu 1lst = match 1lst with

| [1 -> accu

| hd :: tl -> fold_left f (f accu hd) tl
let mul x y = x *x y (x Multiplication! =)
let add x y = x + y (% Addition! =)

Complete each of the following functions by filling in each blank with a single identifier,
keyword or operator. You must write well-typed functional programs.

(* sum_lens takes an string list y as an argument and returns
the arithmetic sum of all of the lengths of elements of y *)

let sum_lens y = fold_left 0 (y)
(* inner_sums [["ant";"bat"] ; [] ; ["oh";"no"]] returms [6; 0; 4]. x*)
let inner_sums z = sum_lens

(¥ prod_odds b takes a list of integers b as input and returns the
* product of all odd integers present in b *)
let prod_odds b = (fun x y ->) 1

(* odds_last c permutes c¢ so that the odd elements are at the front:

* odds_last [1;2;3;4;5] = [4;2;1;3;5] x)
let odds_last ¢ = List.fold_left (fun a e ->
if is_even then I
else Q@ [1) c

Page 4

3 Python Functional Programming (8 points)

Consider a function nfa_accepts for determining if a string is in the language of an NFA. For
simplicity we do not consider epsilon transitions. For example, consider an NFA accepting
the regular language denoted by the regular expression ¢ | a(aa) * b below:

edges = [("qO", "a", "ql") , # in state qO0, on a, goto qil
("qO", "c", "q2") , # in state g0, on c, goto Qg2
("q1", "b", "qg2") , # in state gql, on b, goto g2
("q1i", "a", "qO0")] # in state gql, on a, goto qO

final = ["q2"]

start = "qO"

for s in ["a" , "ab", "c¢c", "aab", "aaab",]:

print s, ":", nfa_accepts(start, edges, final, s)

print [x*x for x in range(10) if x > 5] # list comprehension hint
Yields this output:

a : False
ab : True
c : True
aab : False
aaab : True

[36, 49, 64, 81]

Complete the following recursive definition for nfa_accepts by filling in each blank with a
single identifier, keyword or operator.

def nfa_accepts(state, edges, final, string):

if len() ;= 0:
retur; _________ in
else:
destinations = [for (start,symb,dest) in
;; _____ = state and symb == [0] 1]
return True in [nfa:;;;;;;;(, edges, finalj________Elz])

for dest in destinations]

Page 5

4 Regular Expressions and Automata (19 points)

For this question, the regular expressions are single character (a), epsilon (€), concatenation
(r172), disjunction (ri|ry), Kleene star %, plus r+ and option r?.

(a) (6 pts.) Write a regular expression (over the alphabet ¥ = {a,b}) for the language of
strings that have at least two occurrences of a and have an even number of occurrences
of a (but may contain other characters). Use at most 20 symbols in your answer
(strlen(answer) <= 20).

(b) (6 pts.) Draw a DFA that accepts the language from the above problem. Use at most
four states in your answer.

(c) (1 pt.) Always, Sometimes or Never. Given a finite language L;, there exists a context-
free grammar g such that L; = L(g).

(d) (1 pt.) Always, Sometimes or Never. Given an NFA n, there is a finite or countably
infinite language Ly such that L(n) = L.

(e) (1 pt.) Always, Sometimes or Never. Given a context-free grammar g, there exists an
NFA n such that L(g) = L(n).

(f) (1 pt.) Always, Sometimes or Never. Given an NFA n, there is a DFA d such that
L(d)={st|se L(n)At e L(n)}.

(g) (1 pt.) Always, Sometimes or Never. Given a NFA n, there exists a regular expression
r containing neither * nor ? such that L(n) = L(r).

(h) (1 pt.) Always, Sometimes or Never. Given a countably infinite language L3, there is
an NFA n such that L(n) = Ls.

(i) (1 pt.) Always, Sometimes or Never. Given a DFA d, there is an NFA n such that
L(n) = {ssss | s € L(d)}.

Page 6

5 Ambiguity (14 points)
Consider the following grammar Gj.

E

true | false
EorE | Fand E
not £

SHCRGES
AN

(a) (4 pts.) Show that this grammar is ambiguous using the string “not false or true”.

(b) (10 pts.) Rewrite the grammar to eliminate left recursion. That is, provide a grammar
G+ such that L(G1) = L(G2) but G5 admits no derivation X —* Xa.

Page 7

6

()
(b)

Earley Parsing (32 points)

(27 pts.) Complete the Earley parsing chart (parsing table) on the next page.

(2 pts.) When would we want to use Earley parsing instead of LL parsing? When would
we want to use LL parsing instead of Earley parsing? Do not exceed four sentences.

(1 point if not blank.) What’s your favorite thing about this class? (If you're in
Compilers, answer for Compilers as well.)

(1 point if not blank.) What’s your least favorite thing about this class? (If you're in
Compilers, answer for Compilers as well.)

(1 point if not blank.) Which “trivia” topics would you like to see discussed during
breaks in class?

Extra Credit (at most 2 points). Cultural literacy. Below are the English titles of
ten important works of world literature. Each work is associated with one of the ten
most common languages (by current number of native-language speakers; Ethnologue
estimate). For each work, give the associated language. Be specific.

1. . The Ocean of the Deeds of Rama.
ii. Where the Mind is Without Fear.
iii. Journey to the West.
iv. The Ingenious Hidalgo Don Quixote of La Mancha.
V. The Tale of the Heike.
Vi. Faust.
vii. Palace Walk.
Viii. The Lusiads.
ix. Sense and Sensibility.
X. Crime and Punishment.

Page 8

Pl = pL pue jul = pI
ndu|

0° WV Pplees

[L] 1eyo

Pl < 1

V Pl pue « W

=<V

WYV PlLe S
Jeuwiuweln)

Page 9

