
CS 4501 — LDI — Midterm 1

• Write your name and UVa ID on the exam. Pledge the exam before turning it
in.

• There are nine (9) pages in this exam (including this one) and six (6) questions, each
with multiple parts. Some questions span multiple pages. All questions have some
easy parts and some hard parts. If you get stuck on a question move on and come back
to it later.

• You have 1 hour and 20 minutes to work on the exam.

• The exam is closed book, but you may refer to your two page-sides of notes.

• Even vaguely looking at a cellphone or similar device (e.g., tablet computer) during
this exam is cheating.

• Please write your answers in the space provided on the exam, and clearly mark your
solutions. You may use the backs of the exam pages as scratch paper. Please do not
use any additional scratch paper.

• Solutions will be graded on correctness and clarity. Each problem has a relatively
simple and straightforward solution. We might deduct points if your solution is far
more complicated than necessary. Partial solutions will be graded for partial credit.

– Good Writing Example: Python and Ruby have implemented some Smalltalk-
inspired ideas with a more C-like syntax.

– Bad Writing Example: Im in ur class, @cing ur t3stz!1!

• If you leave a non-extra-credit portion of the exam blank, you will receive one-
third of the points for that small portion (rounded down) for not wasting
our time. If you randomly guess and throw likely words at us, we will be much less
sanguine.

UVa ID: KEY

NAME (print): ANSWER KEY

1

UVa ID: (yes, again!)

Problem Max points Points

1 — Compiler Stages 11

2 — OCaml Functional Programming 11

3 — Python Functional Programming 10

4 — Regular Expressions 28

5 — Ambiguity 12

6 — Earley Parsing 28

Extra Credit 0

TOTAL 100

Honor Pledge:

How do you think you did?

Page 2

1 Compiler Stages (11 points)

Fill in each blank with the number corresponding to the best, most precise answer from the
answer bank. Each answer will be used at most once. Each blank is worth one point.

5 Takes as input Regular Expressions.

12 Is produced by Compilers but not Interpreters.

11 Rejects programs that add integers to strings.

7 Rejects programs with unbalanced parentheses.

9 Is used as input by a Lexer.

2 Represents the program structure and expression types.

3 Is used as input by a Parser Generator.

10 Specifies which strings correspond to Tokens.

8 Accepts precedence and associativity annotations.

1 Is used as input by a Type Checker.

4 Produces Tokens as output.

Answer bank:
1. Abstract Syntax Tree 2. Annotated Abstract Syntax Tree
3. Context-Free Grammar 4. Lexical Analyzer (Lexer)
5. Lexical Analyzer Generator 6. Optimizer
7. Parser 8. Parser Generator
9. Program (Cool) Source Code 10. Regular Expressions
11. Semantic Analyzer (Type Checker) 12. Stand-Alone Executable
13. Tokens 14. Typing Rules

Page 3

2 OCaml Functional Programming (11 points)

Consider the following OCaml functions. The functions are correct and behave as specified;
these are all direct copies of standard library functions. (You may use others too!)

(* map f [a1; ...; an] applies function f to a1 , ..., an , and builds
the list [f a1; ...; f an] with the results returned by f. *)

let rec map f lst = match lst with
| [] -> []
| hd :: tl -> (f hd) :: (map f tl)

(* filter p l returns all the elements of the list l
that satisfy the predicate p. *)

let rec filter p l = match l with
| [] -> []
| hd :: tl -> if p hd then hd :: (filter p tl) else (filter p tl)

(* fold_left f a [b1; ...; bn]] is f (... (f (f a b1) b2) ...) bn. *)
let rec fold_left f accu lst = match lst with

| [] -> accu
| hd :: tl -> fold_left f (f accu hd) tl

(* mem a lst is true if and only if a is equal to an element of lst. *)
let rec mem a lst = match lst with

| [] -> false
| hd :: tl -> (hd = a) || (mem a tl)

let is_odd n = (n mod 2) = 1 (* returns true if n is odd *)

Complete each of the following functions by filling in each blank with a single identifier,
keyword, operator or constant. You must write well-typed functional programs.

(* count_odds returns the # of odd elements in its input list. *)
let count_odds x = _LENGTH_ (_FILTER_ is_odd x)

(* intersect takes two lists as arguments and returns a list of all
elements they both contain. *)

let intersect a b = filter (fun x -> _MEM_
X _B_) a

(* reaches takes a list string -string pairs representing the
directed edges in a graph and returns the set of all nodes
reachable from node "A" (including "A" itself). *)

let reaches edges =
let rec helper reached edges = match edges with
| [] -> reached
| (a,b) :: tl -> if mem _A_ reached && not (mem _B_ reached)

then (helper (_B_ :: reached) edges)
else helper _REACHED_ _TL_

in helper [_"A"_] edges

Page 4

3 Python Functional Programming (10 points)

Consider a function is dfa for determining if a finite state machine description corresponds
to a DFA. Recall that a DFA has no epsilon transitions. Recall that a DFA never has two
edges leaving the same state with the same label going to different destination states. For
example, consider the DFA accepting the regular language denoted by the regular expression
c | a(aa) ∗ b below:

edges = [("q0", "a", "q1") , # in state q0, on a, goto q1
("q0", "c", "q2") , # in state q0, on c, goto q2
("q1", "b", "q2") , # in state q1, on b, goto q2
("q1", "a", "q0")] # in state q1, on a, goto q0

final = ["q2"]
start = "q0"

That DFA accepts “ab”, “c” and “aaab” but neither “a” nor “aab”. However, if we were
to add either or both of the following edges:

("q0", "", "q1") , # in state q0 epsilon transition to q2
("q1", "b", "q0"), # in state q1, on b, goto q0

the result would not be a DFA. As a reminder, here is the list comprehension syntax:

print [x*x for x in range (10) if x > 5] # [36, 49, 64, 81]

Complete the following function by filling in each blank with a single identifier, keyword,
operator or constant. You must write a correct Python program.

def is_dfa(edges , final , start):
any_epsilon = _LEN_ ([b for (a,b,c) in edges \

if _B_ == _""_]) > 0

Helper function to determine if another edge
is leaving the same state on the same character
but reaching a different destination.
def another(a,b,c):

return len([x for (x,y,z) in _EDGES_ \\
if x == _A_ and y == _B_ and \\

z _!=_ _C_]) > 0

edge_problem = len([a for (a,b,c) in _EDGES_ \\
if _ANOTHER_(a,b,c)]) > 0

return not (any_epsilon or edge_problem)

Page 5

4 Regular Expressions and Automata (28 points)

For this question, the regular expressions are single character (a), epsilon (ε), concatenation
(r1r2), disjunction (r1|r2), Kleene star r∗, plus r+ and option r?.

(a) (7 pts.) Write a regular expression (over the alphabet Σ = {a, b, c}) for the language
of strings that have all of the letters in order and an odd number of occurrences of c.
Use at most 20 symbols in your answer.

a* b* c(cc)*

(b) (7 pts.) Draw an NFA (or DFA) that accepts the language from the above problem.
Use at most four states in your answer.

/-\ e /-\ e /-\ c /===\

->| |--->| |--->| |--->|| ||

\-/ \-/ \-/ \===/

| ^ | ^ ^ |

| | | | \-------/

\-/ \-/ c

a b

(c) (2 pt.) NEVER. The set of all strings over Σ = {a, b} that contain more occurrences
of a than b is regular.

(d) (2 pt.) ALWAYS. A finite language is both regular and context free.

(e) (2 pt.) SOMETIMES. An infinite language is regular.

(f) (2 pt.) SOMETIMES. Given a DFA d, there exists a regular expression r containing
neither + nor ∗ such that L(d) = L(r).

(g) (2 pt.) NEVER. The set of valid Cool programs is context free.

(h) (2 pt.) SOMETIMES. Given an NFA n, there is a DFA d such that L(d) = {ss | s ∈
L(n)}.

(i) (2 pt.) ALWAYS. Given a DFA d, there is an NFA n such that L(n) = {rs | r ∈
L(d) ∧ s ∈ L(d)}.

Page 6

5 Ambiguity (12 points)

Consider the following grammar G1.

S → E
E → int

E → E + E | E − E
E → (E)

(a) (3 pts.) Show that this grammar is ambiguous using the string “int - int - int”.

(int - int) - int

vs.

int - (int - int)

(b) (9 pts.) Rewrite the grammar to eliminate left recursion. That is, provide a grammar
G2 such that L(G1) = L(G2) but G2 admits no derivation X −→∗ Xα.

S → E
E → int F
E → (E) F
F → + E | − E | ε

Page 7

6 Earley Parsing (28 points)

(a) (23 pts.) Complete the Earley parsing chart (parsing table) on the next page.

(b) (2 pts.) Give one disadvantage of an LALR(1) parser generator. Give one disadvantage
of an Earley parser. Do not exceed four sentences.

LALR(1) only accept a subset of all context-free grammars, may require you to deal
with shift/reduce and reduce/reduce conflicts, may require you to rewrite the grammar
in an unnatural manner.

Earley can require up to cubic time to parse.

(c) (1 point if not blank.) What’s your favorite thing about this class? (If you’re in
Compilers, answer for Compilers as well.)

(d) (1 point if not blank.) What’s your least favorite thing about this class? (If you’re in
Compilers, answer for Compilers as well.)

(e) (1 point if not blank.) Which “trivia” topics would you like to see discussed during
breaks in class?

(f) Extra Credit (at most 2 points). Cultural literacy. Below are the English titles of
ten important works of world literature or oral tradition. Each work is associated with
one of the ten most common languages (by current number of first-language speakers;
Ethnologue 2015 estimate). For each work, give the associated language. Be specific.

ENGLISH Jayne Eyre.
HINDI (SANSKRIT) Lake of the Deeds of Rama.
SPANISH One Hundred Years of Solitude.
ARABIC One Thousands and One Nights.
RUSSIAN The Brothers Karamazov.
PORTUGUESE The Crime of Father Amaro.
MANDARIN (CHINESE) The Dream of the
Red Chamber.
JAPANESE The Tale of Genji.
JAVANESE (MALAYSIAN) Wayang Kulit.
BENGALI Where the Mind is Without Fear.

Page 8

ch
ar

t
[0

]
ch

ar
t

[1
]

ch
ar

t
[2

]
ch

ar
t

[3
]

ch
ar

t
[4

]
ch

ar
t

[5
]

ch
ar

t
[6

]
ch

ar
t

[7
]

T
→

•E
+
E+

E,
0

E
in

t
→

•,
0

T
E+

→
•E

+
E,

0
E

(
→

•
A

,2
A

in
t

→
•

A
,3

A
)

→
•,

4
T

E+
E+

→
•E

,0
E

in
t

→
•,

6

E→
•i

n
t,

0
T

E
→

•+
E+

E,
0

E→
•i

n
t,

2
A
→

•i
n
t

A
,3

A
→

•i
n
t

A
,4

A
in

t
A

→
•,

3
E→

•i
n
t,

6
T

E+
E+

E
→

•,
0

E→
•(

 A
,0

E→
•(

 A
,2

A
→

•)
,3

A
→

•)
,4

E
(A

→
•,

2
E→

•(
 A

,6

A
→

•,
3

A
→

•,
4

T
E+

E
→

•+
E,

0

E
(A

→
•,

2
A

in
t

A
→

•,
3

T
E+

E
→

•+
E,

0
E

(
A

→
•,

2

T
E+

E
→

•+
E,

0

G
ra

m
m

ar
T

 E
 +

 E
 +

 E
→

E
 i
nt

→
|

 (
 A

A

 i
nt

 A
→

|
)

|
ε

in
t

+
(

in
t

)
+In
pu

t
in

t
+
 (

 i
n
t

)
+
 i
n
t in

t

Page 9

