CS 164 Programming Languages and Compilers Handout 23

Final Exam Solution

e Please read all instructions (including these) carefully.

e There are six questions on the exam, all with multiple parts. You have 3 hours to work on the
€xam.

e The exam is closed book, but you may refer to your four sheets of prepared notes.

e Please write your answers in the space provided on the exam, and clearly mark your solutions.
You may use the backs of the exam pages as scratch paper. Please do not use any additional
scratch paper.

e Solutions will be graded on correctness and clarity. Each problem has a relatively simple and
straightforward solution. You may get as few as 0 points for a question if your solution is far
more complicated than necessary. Partial solutions will be graded for partial credit.

NAME:

SID or SS#:

Circle the time of your section: 9:00 10:00 11:00 12:00

1:00 2:00 3:00 4:00

| Problem | Max points | Points

1 15
2 10
3 10
4 20
5 20
6 25
| TOTAL | 100 |

Spring 00 page 1 of 18

CS 164 Programming Languages and Compilers Handout 23

1. Garbage Collection (15 points)

(a) In Cool suppose we want every object to support an additional method hashValue which
returns an integer value such that

e if we invoke hashValue multiple times on the same object, we always get the same
integer result;

e for two distinct objects that are live simultaneously, there is a very small chance that
they have the same hashValue. Recall that a live object is one that is reachable from
the set of roots.

One implementation of hashValue is simply to return the address of the object invoking
the hashValue method.

For each of the following garbage collection strategies, state whether or not the proposed
implementation of hashValue works, briefly explain why or why not, and propose an alter-
native implementation for any cases where the proposed implementation does not work.

e reference counting

Does work with reference counting. With reference counting, an object

is never moved during its lifetime, so its address does not change.

Thus multiple invocations of hashValue on the same object always get

the same integer result. And since no two live objects can share the same
address, the second property is also satisfied.

e stop & copy

Doesn’t work since after a garbage collection, a live object is always
copied to a different location. Thus, multiple invocations of hashValue
can return different results.

An alternative is to store a timestamp when an object is created as an
additional attribute in the object.

e mark & sweep

Does work with mark & sweep, fo the same reason as for reference counting.

Spring 00 page 2 of 18

CS 164 Programming Languages and Compilers Handout 23

(b) Consider the two tracing garbage collectors discussed in class: stop & copy and mark &
sweep. For each of the following situations, please answer which garbage collection strategy
is the fastest and briefly justify your answer. Ignore the cost of allocation and of tracing in
your answers; focus on the cost of an actual garbage collection.

e In the situation where there is a survival rate (percentage of live data after a collection)
of 8%, and it is 20 times more expensive to copy an object than to sweep an object.

Mark & sweep is faster. Suppose the heap contains N objects and
sweeping an object costs M units of time. The sweeping cost is Nx*M,
and the copy cost is N*8%*20M, which is 1.6NM.

e In the situation where the survival rate is 10% and it is five times more expensive to
copy an object than to sweep an object.

Stop & copy is faster. Again with a similar calculation, the sweeping
cost is N*M, and the copy cost is N*10%*5M, which is O.5NM.

e In the situation where the size of live data is close to the size of the heap.

Stop & copy can’t be used because only 1/2 of the heap can be used for
live data.

Mark & sweep can be used because the whole heap can be used and no

additional space is required to perform a garbage collection (with
pointer reversal).

Spring 00 page 3 of 18

CS 164 Programming Languages and Compilers Handout 23

2. Dataflow Analysis and Optimization (10 points)

Recall that one of Cool’s runtime requirements is to detect dispatch to a void pointer. A naive
implementation of this check requires a few additional instructions to be executed on every
method call, which inevitably degrades the performance of Cool programs. In this problem we
explore ways to eliminate the check.

(a)

List two simple situations in Cool when the dispatch on void check can be safely eliminated.
(No credit for proposing the optimization discussed below!)

The two most popular answers were (there are others):

(new A).foo(Q // dispatch to a ‘‘newed’’ object
self.foo() // dispatch to self

Consider the following excerpt from a Cool program:

let x : A <- foo() in {
x.bar(); (x 1 *)

x.baz(); (x 2 *)
}

We can eliminate the check for void in line 2 if it is known that the value of x has not
changed since the last time we checked x for void in line 1. To check this condition, we
need to perform a data flow analysis.

Describe in words: What information does this analysis need to compute for each program
point? How is that information used to decide whether tests for dispatch to void can be
omitted?

At each program point, for each variable, we maintain a boolean
property ‘‘On all paths reaching this point, has this variable been
checked for void in a dispatch without a subsequent assignment to the
variable?’’ When we encounter an assignment, the property is set to
‘‘false’’ for the assigned variable. When we encounter a dispatch,
the property is set to ‘‘true’’ after the dispatch. All other
statements propagate the information unchanged (at joins we are
conservative and take a logical ‘‘and’’ of the values of the
predecessors) .

Another acceptable answer was to propose a variant of constant propagation,
where we treat each dispatch as assigning a fresh symbolic constant
to a variable and each real assignment as making the variable non-constant.

Yet another acceptable answer was to propose using liveness analysis

to figure out if between any two dispatches there was a killing assignment.
This is unnatural and tricky (you can’t just check one program point,

but have to check every point in between the assignments). Though

clumsy, it was worth full credit if correctly described.

Spring 00 page 4 of 18

CS 164 Programming Languages and Compilers Handout 23

(c) Is this a forward analysis or a backward analysis (circle one)?

forward is the expected answer

credit was given for ‘‘backward’’ if the previous answer was a correct
application of liveness analysis

(d) Can we apply the method from above to eliminate the check if x is an attribute rather than
a local variable? Why or why not?

No. A method call may modify an attribute, so we can’t know after method
calls whether attributes are void or not. (A yes answer is also acceptable,
if one points out that we either have to be very conservative at method
calls or do interprocedural analysis.)

Spring 00 page 5 of 18

CS 164 Programming Languages and Compilers Handout 23

3. Optimization (10 points)

For your reference, here is a list of the optimizations discussed in class. We will refer to this list
in the following questions, and you can use this list to remind yourself of optimization names.

(a) Algebraic simplification

(b) Constant folding

(c) Common subexpression elimination
(

)
)
)
d) Copy propagation
(e) Dead code elimination
)

(f) Peephole optimizations

We also introduce one new transformation ezxpression propagation, where we allow an entire
expression e in an assignment a < e to be substituted for later uses of a, assuming neither a nor
any of the temporaries occuring in e are assigned to again before the use.

Consider the following section of a flow-graph for a bubble-sort algorithm in three-address code:

13 < j -1
tg — 4% g
temp < Alto]
t10 —7+1

111 — tig—1
t12 — 4=ty
t13 — A[tlg]
t14 +—7—1
t15 — 4% t14
Altis] < t1s

116 —7+1
t17 — tig—1
118 — 4 xt7
Alt1g] « temp

Spring 00 page 6 of 18

CS 164 Programming Languages and Compilers

g —3—1
tg — 4% i
temp < Alto]
tip <« J+1

t11 — tig—1
t12 — 4%t
t13 — A[tlg]
t14 «— j —1
ti5 — 4 xty
A[t15] «— t13

ti6 —J+1
ti7 +— tig—1
t18 — 4 xt17
Altig] < temp

tg —g5—1
tg — 4% s
temp < Alto]
tip <« Jj+1
tin < J

t12 —4dxj
t13 — A[t12]
t14 — j —1
tis — 4% t14

A[t15] «— t13
tig < j +1
tir < J

t1s —4xj
Altig] + temp

tg —j—1
tg — 4% g
temp < Altg]
112 4 *]
113 — A[t12]
t14 — j —1
t15 — 4dxtyy
A[t15] $— t13
118 +— 4 *]
Altig] < temp

Handout 23

The following is the evolution of the basic block through several optimization stages:

tg —j5—1
29 — 4 xtg
temp < Alto]

t12 — 4 *]
t13 — A[tlg]
A[tg] $— t13
Alti9] « temp

For each optimization stage, identify all optimization(s) applied (there can be more than one!).
You may refer to the list in the beginning of this problem.

Note:

each optimization.

e Stage 1:

— Expression propagation:

— Algebraic Simplification or Constant Folding:

t17

To answer this problem you only had to write down the optimiztaion names
in no particular order.

The answer below also explains what happened during

j, similarly for ti7

— Copy Propagation:

e Stage 2:

— Dead code elimination:

e Stage 3:

Spring 00

Common subexpression elimination:

t11 =t10 — 1 becomes {1y =j+1—1, similarly for

ti11=7+1—1 becomes t1; =

tio =4*t1; becomes t19 =47, similarly for #;g

4% j becomes tig = t19

Copy propagation:

Common subexpression elimination:

Copy propagation:

Altro] = ...

Dead code elimination:

remove tip=j+1, t11 =3, tig=7—1, tir =7

ti4 = j — 1 becomes ti4 = tg, and tig =

tis =4+ t14 becomes t15 =4

ti5 =4 % j becomes ti5 = tg

Afti5] = ... becomes Aftg] = ..., and Aftig] = ... becomes

remove t14 = tg, t15 = tg, and t18 = t12

page 7 of 18

CS 164 Programming Languages and Compilers Handout 23

4. Dynamic Scoping (20 points)

In Cool, there are three kinds of variables: attributes of a class, method parameters, and local
variables introduced by let and case. In particular, method parameters and local variables are
only in scope within the body of their definition—this is lexical scoping. In this question, we
will add a fourth kind of variable to Cool that supports dynamic scoping.

Like ordinary variables, dynamically-scoped variables can be used within the body of their
definition, but in addition their scope extends through method calls. For example,

foo() : Int {
let x : Int <- 6 in
x+y
+;
bar() : Int {
dynamic-let y : Int <- 7 in
foo()
};

In Cool, method foo is illegal because y is a free variable in its body. However, if we supported
dynamic scoping, method foo would be fine as long so it was called in a context where a
dynamically-scoped variable y was defined, such as in method bar.

We fix the problem with the example above by modifying the method declaration form. We
add a second optional list of formals (with their types) that defines the types of all of the free
variables in the method. We rewrite method foo as an example:

foo() (y:Int) : Int {
let x : Int <- 6 in
x+y

};

Spring 00 page 8 of 18

CS 164 Programming Languages and Compilers Handout 23

Here is the current type checking rule for method declarations. For simplicity, we have omitted
SELF_TYPE, and you may ignore SELF_TYPE in your answers.

M(Caf) = (Tla"'aTnaTO)
Oc[Tl/aJl]... [Tn/xn],M,C Fe: Té
Ty < Ty

Meth
Oc,M,Ct f(x1:T1,...,zn:Tp):To { e }; [Method]

(a) Complete the partial rule below to incorporate our new method declaration form and make
method foo above type check correctly. Note that we have modified the form of the method
prototype (contained in the map M) to identify clearly the names and types of the free
variables.

M, f)=(T1,...,Tn;vy1 : T{, ...y ym : T},;T0)
OGIT: [, [T)T 31 1s s [T s M, C - T
Ty <Tp
Oc,M,Ct f(z1:Th,...;xn :Tp)(y1 211, .. .;ym 2 Th) : To { e };

[Method]

Spring 00 page 9 of 18

CS 164 Programming Languages and Compilers Handout 23

Consider now another example with foo and bar written as follows:

foo() (y:Int) : Int {
let x : Int <- 6 in x + y };
bar() : Int {
dynamic-let y : Bool <- true in foo() };

The variable y is declared as a Bool in method bar and as an Int in method foo. In order
to type check this program, we need a type rule for dynamic-let, and we need to modify
our existing type rules. We add a new type environment called D (defined just like 0), to
hold the types of just the variables introduced by dynamic-let. Here is the new type rule
for dynamic-let with initialization (the rule without initialization is similar):

D,O,M,Cl—el :Tl

Th <Tp

D[T()/.’E],O[T()/LE],M,CF62:T2
D,0,M,C \- dynamic-let z : Ty < e1 in ey : Th

[Dynamic-Let-Init)

Note that we add the typing for x to both D and 0. For the following incorrect variation
of the rule, give a simple example that fails to type check because we do not add the type
assumption for x to the environment 0.

D,O,M,C F €1 ZT1

Th <Tp

D[T()/.’E],O,M,C H €9 T2
D,0,M,C I dynamic-let x : Ty < e in eg : Th

[Dynamic-Let-Init]

foo() : Int {
dynamic-let y : Int <- 7 in
y
};

If we only added y’s type to D, we would not be able to look up y
in the body of the dynamic-let. Our unchanged rule for variable
references looks in 0, not D.

Spring 00 page 10 of 18

CS 164 Programming Languages and Compilers Handout 23

()

Here is the current rule for method dispatch:

O,M,Cl—eolTo
O,M,CFe: Ty

O,M,Cte,:T,

M(TOaf) = (T{7"'7T’IIL7T’IIL+1)

T,<T 1<i<n
O,M,Ctep.fler,...,en) : T) 4

[Dispatch]

Modify this rule to incorporate D. Make sure you use the new form of the M mapping.

D,O,M,Cl—e():TO
D,O,M,Cl—el ZT1

D,O,M,Cte,:T,

M(T()af):(T{V'"Trlwy15 ia"-aymZS;an(;)

T,<T 1<i<n

D(y;)=S; 1<j<m
D,0,M,Cteo.f(e1,...,en) : T}

[Dispatch]
Common mistakes:

Adding D to each line, but doing nothing else.

Changing the method invocation to explicitly pass the dynamic
variables.

Treating dynamic variables as expressions to recursively typecheck
instead of variable names to look up directly in D.

Note:

Here is a subtle point. The types of the dynamic variables declared in
dynamic-let (and added to D) must be invariant (equal to) the declared
dynamic types for the method. Since dynamic variables are
call-by-reference, contravariant subtyping (as for normal procedure
parameters) is not sound. We did not take off any points for students
who allowed contravariant subtyping of dynamic variable method
parameters.

After adding these new type checking rules to our Cool compiler, we're satisfied that it
will correctly type check programs that use dynamic-let. Now, it’s time to generate code.
In plain English, discuss one method for implementing dynamic-let. Be sure to describe
where dynamic variables are stored, how they are looked up and referenced, and how they
are managed across method invocations.

Here are several possible solutions:

1. Keep a runtime data structure like the SymbolTable (used in PA4 and

Spring 00 page 11 of 18

CS 164 Programming Languages and Compilers Handout 23

PA5) to store a mapping between the name of a dynamic variable and its
value. For each dynamic-let, enter scope and insert the dynamic
variable into the table. Whenever you look up the dynamic variable at
runtime, find its name in your static data area and look up its value
in the table. After the dynamic-let body is finished, exit scope.

2. A different version of the above idea: You can determine at
compile-time what the names of all dynamic variables are in the entire
program. Assign each of these a unique id. Instead of using a
SymbolTable (mapping names to values), use an IntegerTable (mapping
integer ids to values). It should be faster than a name lookup.

3. Another alternative: Don’t use a SymbolTable or IntegerTable, but
just a normal one-level hashtable. When you enter a dynamic-let, you
save the old value of that variable (it’s ok if it’s void) in a
temporary variable on your stack, and then write the new value into
the table. When you exit a dynamic-let, read the value from the
temporary slot in your stack and write it back into the table. This
technique is known as shallow binding.

4. Put dynamic variables on the stack, in temporary slots, like let
variables. On a method invocation, pass the formal arguments as
before, but in addition, pass pointers to the temporary slots that the
dynamic variables live in (this is call by reference). When you access
the dynamic variable, you indirect through this pointer to access the
value in its home activation record.

5. A different version of the above idea: Instead of passing pointer
to the dynamic variables’ temporary slots, pass the values of the
dynamic variables. When you access the dynamic variables, you access
them in the current activation record. When you return from a method,
make sure to copy the dynamic variable values from the callee’s
activation record back into the caller’s activation record. This is
known as call-by-copy-in-copy-out.

6. A variant of the above that is difficult to get right is to use the
old fp on the stack to gain access to the caller’s activation record
where the dynamic variables are stored. However, since dynamic-let may
nest arbitrarily deep, it is not known at compile-time how many frames
you need to traverse to find a given dynamic variable. Run-time
bookkeeping for this solution is complicated. It involves keeping
track of the number of frames to traverse for each dynamic variable
separately and passing this information through every method
invocation.

Spring 00 page 12 of 18

CS 164 Programming Languages and Compilers Handout 23

5. Register Allocation (20 points)

This problem is concerned with register allocation and instruction scheduling for the program
whose control-flow graph is shown below.

(a) Write down the set of live temporaries at the points 1-5 in the program. Assume that there
are no live variables on exit. (It is a good idea to compute the live variables at all points
in the program, even though this part does not require it.)

Live at 1 = {a, b, d}
Live at 2 = {a, b, ¢, d, f}
Live at 3 = {a, b, d}

Live at 4 = {k}

Live at 5 = {a, b, d, g}
(b) Fill in the edges of the register interference graph:

Solution: See the graph.

Spring 00 page 13 of 18

CS 164 Programming Languages and Compilers Handout 23

(c) Show a coloring for the register interference graph using the minimal number of colors. Use
color names such as Rj, Ra, Write the color next to each node in the graph.

Solution: See the graph.

(d) Consider now that we swap the instructions f := band ¢ := ¢ + b so that the basic block
containing them is as follows:
c:=a+b
c:=c+b
f:=>b
f:=f*a

What is now the set of live registers at point 2 in the program (right before the instruction f
:= b? And what is the minimum number of colors necessary now to color the interference
graph? Explain briefly why the number of colors changes.

Live at 2 = {a, b, d}

Colors = still 5. Even though there is no interference anymore between ¢ and f, the set
of nodes {a, b, ¢, d, g} continues to form a 5-clique. (The question was not intentionally
misleading; we got it wrong the first time.)

(e) The swap from point 5d above is legal. But not all swaps are legal. Consider the sequence
of two arithmetic instructions:
X:=YyOpz
u:=topv

Explain when these two instructions can be swapped, according to the rules of instruction
scheduling? Complete the partial answer below (where z #Z ¢ means that z and ¢ are not
the same temporary).
Solution: The instructions can be swapped if and only if:

x #t read-after-write

x Zwv read-after-write

T #u write-after-write

u Zy write-after-read

u Z z write-after-read

Spring 00 page 14 of 18

CS 164 Programming Languages and Compilers Handout 23

(f)

Consider again the original control-flow graph and assume that we have 3 available registers
for allocation. We will have to spill some temporaries to memory. Explain why it is not
useful to spill temporary k to memory.

Solution: Register k does not interfere with any other registers. Thus spilling it will not
reduce the number of colors necessary to color the graph.

While performing register allocation it is possible to eliminate some move instructions
(instructions of the form x := y). If the register allocator assigns the same register to
temporaries x and y, then the move instruction can be eliminated.

A simple way to force the register allocator to place two temporaries x and y in the same
register is to combine the nodes in the register interference graph for x and y into one node
(the combined node has all the edges of both original nodes). When is it legal to combine
two nodes in a register interference graph?

Solution: The nodes can be merged if there is no edge between them in the graph.

Spring 00 page 15 of 18

CS 164 Programming Languages and Compilers Handout 23

6. Lambda Calculus (25 points)

Here is the grammar for the untyped A calculus:

(a)

E:=z|X.E|EE

Show that this grammar is ambigious.

The string x y z can be parsed as both (x y) z and x (y z).

On the next page is the DFA of LR(1) items for an LALR(1) parser for this grammar.
The grammar has been augmented with a new start symbol S’, and the states have been
numbered. This DFA for recognizing viable prefixes has exactly four conflicts. For each of
the conflicts, list what state it appears in, what kind of conflict it is (shift-reduce or reduce-
reduce), and what lookahead token exhibits the conflict. Note that we use the symbol e
instead of - as the marker in LR items.

State 5 contains shift/reduce conflicts on x and A. State 7 contains
shift/reduce conflicts on x and \.

There are two rules for disambiguating A calculus terms:

e The body of the function corresponding to “Az.” extends from the “.” as far to the
right as possible. For example, Az.\y.x y parses as A\z.(Ay.(z y)).

e Application associates to the left. For example, z y z parses as (z y) 2.
For each conflict in part (b), state how the conflict should be resolved to make the parser

obey these rules. Phrase your answers as “the conflict in state X on input Y should be
resolved by shifting/reducing by production W”.

Both conflicts in state 7 should be resolved as shifts. Both
conflicts in state 5 should be resolved as reduces by production £ — E E.

Spring 00 page 16 of 18

CS 164 Programming Languages and Compilers Handout 23

oF

o
o)\ F
oL E

[en]
SNoNoRA
141l
8 88 ®

&6 P &P

FEe
FE o

w
«

A 2 E - Mez.E m,\$

oz .FE

$
X
oz z,
X
oL E T

S

l

b

8

>
SESESES
L1114l

E Ee T, A
E e E z)\
or T,
. E oz, A
oL F T,

D EE
AN

Ax.Ee
E o FE

.o B

er

4 E - Me.E z,)\$

o

oz . F
oK F

N

Slclolollo
1141l
8 8 888
> > > >
SloNolle
VA

x

x
. E x,
oL E T

S L L L P

(d) In the A-calculus, can evaluation of an expression using call-by-value differ from evaluation
using call-by-name? Explain.

Yes. An expression evaluated under call-by-value may not terminate
when evaluating under call-by-name does. Note that it is not true
that call-by-name evaluation always terminates.

(e) Evaluate the following expression under call-by-name. Write each step of S-reduction.

(Az A y.z y) Az y.z)) (Az.x)

Solution:

((AzAy.z y) Az Ay.x)) (Azz) =5 (Ay.(Az.dy.z) y) (Az.x)
=5 (Az.Ay.z) (Mz.z)
=5 Ay.(Az.z)

Spring 00 page 17 of 18

CS 164 Programming Languages and Compilers Handout 23

(f) For each of the following A expressions, circle its principal type:

i Az \yy x
() a =B =« b)—=a—a
(c)a— (a—p)—p (d)(a—=p)—a—p

Solution: ¢

ii. Az y.(zy)y

(a) a— (a—=p) >« b) (a—wa—p)—sa—p
() (@=pB)=(a—=B)—a)=p (d) a—= (a—=p) > p
Solution: b

iii. Az \y.z (y x)

(a) (= B) = ((a >) »a) > p (b) a = (@a—a) = (a—a)
() (@a—a)=> (@—a)>a (d) @ = (@ B) = 8

Solution: a

iv. Azdyy (y 7)
(a) a = (@ = a) 2 a (b) (@ =2 a) v a—a
(c)a—= (a—=pB) >« (d)a—=(a—=a)—=(a—a)
Solution: a

(g) Write down a \ expression that has type
(@a=p)=>(r—a)>y—B

Solution: \z.\y.\z.z (y z)

Spring 00 page 18 of 18

