CS 164 Programming Languages and Compilers Handout 15

Final Examination

e Please read all instructions (including these) carefully.

e You may not discuss the contents of the exam with anyone who has not taken the exam until
after 8:30 p.m. Wednesday.

e There are 8 questions on the exam, each worth between 15 and 30 points. You have 3 hours to
work on the exam, so you should plan to spend approximately 22 minutes on each question.

e The exam is closed book, but you may refer to your four sheets of prepared notes.

e Please write your answers in the space provided on the exam, and clearly mark your solutions.
You may use the backs of the exam pages as scratch paper. Please do not use any additional
scratch paper.

e Solutions will be graded on correctness and clarity. There are no “tricky” problems on the
exam—each problem has a relatively simple and straightforward solution. You may get as few
as 0 points for a question if your solution is far more complicated than necessary.

NAME: Sample solution

SID or SS#:

Problem | Max points | Points

1 15
20
20
30
20
20
30
8 30

| TOTAL | 185

1| O O | W D

Fall 95 page 1 of 11

CS 164 Programming Languages and Compilers Handout 15

1. Regular Expressions (15 points)

Suppose we have a language with persistent objects that can be located anywhere on a network.
The name of an object is similar to names used on the WWW, with the form

[<class>:] [//<address>/] <path>

The notation above is interpreted as follows:

square brackets [] delimit optional parts of a name;
angle brackets < > delimit patterns, described below;

an identifier is a sequence of one or more lower case letters, capital letters, digits, and the

characters ’, ’$’, and *-’, not beginning with a digit or -’;

<class> is an identifier;
<address> is a list of one or more identifiers, separated by .’;

<path> is a list of one or more identifiers, separated by ‘/’.

Write a regular expression describing object names. You may use any of the regular expression
operations given in lecture and flex abbreviations.

Using flexish notation:

(({id}:) + epsilon) ((//{address}/) + epsilon) {path}

where

path = {id} (/{id})*

address = {id} (.{id})=*

id

Fall 95

= [a-zA-Z_$] [-a-zA-Z_$0-9]*

page 2 of 11

CS 164 Programming Languages and Compilers

2. Code Generation (20 points)

Consider the following fragment of assembly code produced by coolc:

Main.f:

addiu
SW

SW

SW
addiu
move
1w

SW

1w
jal
1w

1w

1w
add
SW

1w

1w

1w
addiu

jr

$sp
$fp
$s0
$ra
$fp
$s0
$a0
$a0
$a0

$sp -16
16($sp)
12($sp)
8($sp)
$sp 4
$a0
20($fp)
0($fp)
24($fp)

Object.copy

$t1
$t2
$t1
$t1
$t1
$fp
$s0
$ra
$sp
$ra

0($fp)
12($a0)
12($t1)
$t1 $t2
12($a0)
16($sp)
12($sp)
8($sp)
$sp 28

Handout 15

Give Cool source that generates this code (you need not give a complete Cool program, just a

fragment that produces this assembly code).

class Main is

f(x: Int, y: Int, z: Object) is y + x end;

end;

(the type of z is arbitrary)

Fall 95

page 3 of 11

CS 164 Programming Languages and Compilers Handout 15

3. Parsing and Attribute Grammars (20 points)

Consider the following proposal to add arrays to Cool. The following examples declare a to be
an array of 5 elements of type Int and b to be a 10 x 10 array of Bools.

a[5]: Int
b[10][10]: Bool

In general, an array declaration has an identifier, one or more dimensions, and a type name.
All dimensions are declared with explicit integer constants, not arbitrary expressions. Give a
grammar for Cool array declarations. In addition, define an attribute size and give attribute
equations that compute the number of elements of the array. In the examples above, your
solution should assign a.size = 5 and b.size = 100. You may assume that that terminal
symbols have an attribute val that is the lexeme of symbol. Do not use ellipses (...) in your
grammar.

ArrayDef -> id Dims : type { id.size = Dims.size }
DimsO -> Dims1 Dim { DimsO.size = Dimsl.size * Dim.size }
Dim -> [int] { Dim.size = int.val }

(note: DimsO and Dimsl are actually the Dims non-terminal. The different
name is used to distinguish them in the attribute grammar equation).

Fall 95 page 4 of 11

CS 164 Programming Languages and Compilers Handout 15

4. Instruction Scheduling and Register Allocation (30 points)

Consider the following intermediate code control-flow graph:

{b,d, e} —

-~
{a,b,d, e} —1,2 = load 0(b)
c := load 0(d)
{a,b,c,d,e} s
{b,C,d,e,f}iﬁ <c
{b,c,d e f}— =
{b,d, e f}__ /
e :=e + f
{b,d, e}—=
{b,d,e}7+ _
{b,d e} L =P
{b,d e}—3 ‘= d-
{b.dej_|.2 ==
{ e}

(a) Assuming that e is live on exit from the loop, show the set of live variables before and after
each instruction. Annotate the control-flow graph above with your answer.

(b) Show the dependence graph for each basic block of this control-flow graph.

a := load 0(b) c := load 0(d) b:=b + 4 d:=d- 4
f:2*a\~ b ==d
f <c
e:=e +f e:=Ze+c

Fall 95 page 5 of 11

CS 164 Programming Languages and Compilers Handout 15

(c) In class we discussed both how to perform register assignment and instruction scheduling.
Unfortunately, these two important backend components do not always work well together.
Assume that register allocation is done before instruction scheduling. Explain why this may
be undesirable—i.e., show that instruction scheduling can be made worse by first performing
register allocation.

By reusing registers, the code that exists after register allocation
may introduce "false'" dependencies between instructions. These
dependencies will prevent reordering, resulting in worse code.

For example, before register allocation you could have:

tl <- t2 + t3
t4 <- t5 + t6

These two instructions can be swapped if it will make the scheduling
better.

After register allocation, they could be:

r0 <- r2 + r3
r0 <- r5 + ré6

These two instructions cannot be swapped (of course, in this simple
example, the first one is useless, but...)

Fall 95 page 6 of 11

CS 164 Programming Languages and Compilers Handout 15
5. Garbage Collection (20 points)

Show the result of running the stop & copy garbage collection algorithm on the heap shown
below. Fill in the second heap with the results of the garbage collection. You need not represent
the forwarding pointers from the old to the new space.

The following points are important:

e The roots are processed in the order: accumulator (acc), then the stack (first framel, then
frame2).

e When an object on the heap has several pointers leaving it, you should process these pointers
in top to bottom order.

roots

Fall 95 page 7 of 11

CS 164 Programming Languages and Compilers Handout 15

6. Type Checking, Runtime Organization (20 points)

We add a new kind of expression to extend Cool with concurrency:

Expression — ... |fork(Expression,Expression)]| ...

The semantics of fork is that the program may evaluate e; and eg in any order, including

simultaneously. On a parallel machine e1 and eq could actually execute at the same time; on a

sequential machine the two computations may be interleaved by partially evaluating ey, partially

evaluating eq, switching back to e1, and so on.

(a)

Fall 95

(5 points) Assume the semantics of fork(eq, ep) is that both expressions are evaluated and
the result is the value of e3. Write a Cool type rule for fork; make your rule as accurate
as possible.

0, M, C |- el : t1
0, M, C |- e2 : t2

0, M, C |- fork(el, e2) : t2

(5 points) Now assume the semantics of fork(es, e2) is that both expressions are evaluated
and the result is the value of the first expression that completes. Write a Cool type rule
for fork; make your rule as accurate as possible.

0, M, C |- el : t1
0, M, C |- e2 : t2

0, M, C |- fork(el, e2) : lub(t1,t2)

(10 points) Parallel evaluation of fork(ei,eg) implies that activation records cannot be
stack allocated. Explain why this is the case. (Note: You are not asked to solve the
problem, merely to explain the problem.)

If the two computations do not share a common stack pointer, they will
simply overwrite each others activation records. If they do share it,
the following sitation can arise

- procedure a in computation 1 is called

- procedure b in computation 2 is called

- procedure a terminates. How can the stack pointer be reset ? If it
is reset to where the stack was when procedure a was called, this will
also clear procedure b’s activation from the stack.

page 8 of 11

CS 164 Programming Languages and Compilers Handout 15

7. Code Generation (30 points)
This problem explores the design of a code generator for a small language. The grammar of the
language is:
Program — f(x)=E
E — integer|x|f(E)| E17Ey:Es

The only data type in this language is integer. A Program is a single, possibly recursive, function
definition £ of one argument x. The formal parameter x has lexical scope. The meaning of
expressions is:

e integer is the integer constant.

e x is the value of the formal parameter.

e f(E) is a recursive call to f.

e E{7Ey : E3 is the value of Eg if E{ is non-zero and the value of Eg3 if Eq is zero.
The following page gives a skeleton of a code generation algorithm for this language; you should

fill in the skeleton to generate machine code. In addition, describe your organization of activation
records in the space at the bottom of this page.

Use only the following three registers in your solution:

e $ais the accumulator
e $sp points to the first empty word beyond the top of the stack

e $ra holds the return address

You may use newlabel() to create new, unique labels. Use any clear pseudo-code notation
for your program. You may generate any reasonable three-address code, including MIPS (see
problem 2 for example MIPS instructions). Assume that the program is error-free; do not check
for any errors.

Activation record (stack growing downwards on page):

<- sp points to next free space at function entry

(There is no need for a frame pointer...)

Fall 95 page 9 of 11

CS 164 Programming Languages and Compilers Handout 15

cg_fundef(p) = /# called with the function definition #*/
{
case p of
f(x) = e =>

emit "{f}:" // label for function
emit "addiu $sp $sp -4" // reserve space for activation record
emit "sw $ra 4($sp)" // save return address
cg_e(e);
emit "lw $ra 4($sp)" // return...

emit "addiu $sp $sp 8" // pop full AR
emit "jr $ra"

cg_e(e) =
{

case e of
integer =>
emit "1i $a {integer}" // load value of integer into acc

x => // Only 1 argument, we know where it is...
// (assuming static checking has been done correctly...)
emit "lw $a 8($fp)"

f(e) =>
// Call f
cg_e(e);
emit "addiu $sp $sp -4" // reserve space for argument
emit "sw $a 4($sp)" // save it
emit "jal {f}" // call function

el 7 e2 : e3 =>
cg_e(el)
elselab = newlabel()
endlab = newlabel()
emit "beqz $a0 {elselabl}" // branch to else if zero
cg_e(e2) // non-zero: evalauet e2
emit "ba {endlabl}"
emit "{elselabl}:" // zero: evaluate e3
cg_e(e3)
emit "{endlabl}:"

Fall 95 page 10 of 11

CS 164 Programming Languages and Compilers Handout 15

8. Short Answers (30 points)
For each of the following questions we are looking for a clear, concise answer as well as the right

idea.

(a)

Fall 95

(5 points) Give a definition and an example of an ambiguous grammar.

A grammar is ambiguous if there is a string that has two parse trees.

Example:
E->E+E | E=*E| int

(eg on input: 2+3%4)
(5 points) What does it mean for a type rule to be sound?

A type rule is sound if when it assigns type t to an expression, that
expression evaluates to type t (in Cool this is understood to mean
"evaluates to a type that is a subtype of t").

(10 points) Debuggers work by keeping track of which group of instructions in the assembly
code corresponds to which line of the source code. An assumption of most debuggers is that
the assembly instructions for a source line appear consecutively in the assembly program.
Name an optimization that makes the job of the debugger more difficult and explain why.
You should illustrate your answer with an example.

Instruction scheduling may arbitrarily move the instructions of a
basic block around. It may thus intersperse the instructions from one
source line with those from another, thus destroying the assumption on
which the debugger is based.

Example (x, k are global):
x=y %3
k =a*2

Initially could compile to:

tl <-y * 3 -- statement 1
store tl1 @ x -- statement 1
t2 <- a *x 2 -- statement 2
store t2 @ k -- statement 2

But after instructio scheduling it might become:

tl <-y * 3 -— statement 1
t2 <- a * 2 -- statement 2
store tl1 @ x -- statement 1
store t2 @ k -- statement 2

page 11 of 11

CS 164 Programming Languages and Compilers

Handout 15

(d) (10 points) In the following program, what does g() print under: (a) call-by-value and
lexical scope, (b) call-by-value and dynamic scope, (c) call-by-reference and lexical scope,

Fall 95

and (d) call-by-reference and dynamic scope

fun g() =
{
int a = 2;
void f£(int b) {
b =D % a;
a=a-b;
}
{
int a = 10;
fa);
print a;
}
¥
a: 10
b: -90
c: 20
d: 0

page 12 of 11

