The Onion Router and Dark Web

And also, ML and web systems bias
Review: Ethics

- **Ethics** are a set of guiding principles for deciding whether behavior is acceptable or not
- In web systems, we must comply with ethical guidelines when it comes to data we collect and use
 - **Who owns** the data?
 - How do we **collect** the data?
 - Once collected, what will be **use** it for?

- Sometimes, data can be collected easily and via *implied consent*
 - When you search for something on Google, they’ll collect your IP and search history
 - But sometimes, easily-collected data can be used for other purposes
 - In which case you may need **informed consent**

- We must gather **informed consent** when collecting data
 - The subject must understand what data is collected, why, and how it will be used
 - It is unethical to collect certain data without informed consent

- Unethical behavior *sometimes* is met with force of law, but often **credibility** is critical
 - Will we ever trust Equifax again? Remember the “doctor” that published the vaccines = autism study?
Half-Slide Summary? Bias
(the other half is on Dark Web)

• We already saw Google Bombing to influence search results

• More generally, big data has led to an explosion of deep learning

• Biases present in data may influence machine learning models
 • Systemic biases that influence outcomes of predictions for a variety of purposes
 • Affects performance and use of web systems
HOMELAND SECURITY WILL LET COMPUTERS PREDICT WHO MIGHT BE A TERRORIST ON YOUR PLANE — JUST DON’T ASK HOW IT WORKS

Susan Biddle
December 3, 2018, 1:47 p.m.
LAPD to scrap some crime data programs after criticism

By MARK PUENTE
APR 05, 2019 | 5:00 PM

Impact of Social Stereotypes on Data

- 2016 Google queries: racial stereotypes
Impact of Social Stereotypes on Data

- Google query for “doctor”: race/gender/age stereotypes
Impact of Social Stereotypes on Data

• Google query for “nurse”
Impact of Social Stereotypes on Data

• Google query for “homemaker”
Impact of Social Stereotypes on Data

• Google query for “CEO”
Societal Stereotypes in Data

• Biased data produces biased models
 • Thus, predictions are biased as well

• Alternative thought question:
 • What is a chair?
Research on Bias in ML

• Machines learn trustworthiness and likeability traits from faces
 (Steed and Caliskan 2020)

• Self-driving cars biased against genders and races
 (Wilson, Hoffman, and Morgenstern 2019)

• Males are over-represented in the reporting of web-based news articles
 (Jia, Lansdall-Welfare, and Cristianini 2015)

• Males are over-represented in twitter conversations
 (Garcia, Weber, and Garimella 2014)

• Biographical articles about women on Wikipedia disproportionately discuss romantic relationships or family-related issues
 (Wagner et al. 2015)

• IMDB reviews written by women are perceived as less useful
 (Otterbacher 2013)
Sources of Bias

• Bias in data and sampling
 • (social biases, unrepresentative user base)

• Optimizing for a biased objective
 • (bad training)

• Inductive bias
 • (implicit assumptions made by the model itself)

• Bias amplification
 • (the model learns the “wrong” features)
Bias in Data and Sampling

- **Self-selection bias** is a statistical effect in which a group will select themselves, biasing a sample.

- **Concretely:** who writes Yelp reviews? Who reads them?
 - People may not talk about things consistent with empirical measurement.
 - Communities of language speakers lead to differing model performance.

- What about system bias?
 - Can we tell if Yelp is biasing reviews?
 - “It would be a shame if you didn’t pay us and you got a few 1-star reviews...”

[Image: Distribution of Yelp Users]
Bias in Language Identification

- ML application: Identifying a language given a string written in it

After language identification, we can look for keywords like flu/sick, then follow up with a conclusive explanation (maybe they’re hungover)

If we can’t identify the language to begin with, there’s no way to extract followup semantics (i.e., we can’t find keywords like flu/sick without knowing it’s an English Tweet)
Bias in Language Identification

• Language Identification systems under-represent populations in underdeveloped countries
Bias in Language Identification

• By retraining on more representative corpora:
Objective Bias

• **Objective bias** occurs when models are asked to make predictions that actually answer a different question

• **Concretely:** “What is the **probability** that a given **person** will commit a serious **crime** in the **future** based on the **sentence given now**?”

• Example: COMPAS
 • Balanced data from people of all races (and race was not a feature)
 • **Problem:** “who will commit a crime” is not obtainable (we can’t know it ahead of time)
 • **Instead:** model was learning “who is more likely to be convicted” (notice the difference!)
Inductive Bias

• An **Inductive bias** is the result of an implicit assumption made in the construction of a given model

• **Concretely:** Datasets of words may represent biases

• Consider word2vec, an *embedding* for words
 • (gross oversimplification: fancy tf-idf scores)
 • You can use it to represent each *word* or *phrase* as a vector **based on examples of English text**
 • *man* − *woman* ≈ *computer programmer* − *homemaker*
Inductive Bias in Embeddings

\[
\min \cos(he - she, x - y) \quad s.t. \quad ||x - y||_2 < \delta
\]

<table>
<thead>
<tr>
<th>Extreme she</th>
<th>Extreme he</th>
<th>Gender stereotype she-he analogies</th>
<th>Gender appropriate she-he analogies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. homemaker</td>
<td>1. maestro</td>
<td>sewing-carpentry</td>
<td>registered nurse-physician</td>
</tr>
<tr>
<td>2. nurse</td>
<td>2. skipper</td>
<td>nurse-surgeon</td>
<td>interior designer-architect</td>
</tr>
<tr>
<td>3. receptionist</td>
<td>3. protege</td>
<td>blond-burly</td>
<td>feminism-conservatism</td>
</tr>
<tr>
<td>4. librarian</td>
<td>4. philosopher</td>
<td>giggle-chuckle</td>
<td>cosmetics-pharmaceuticals</td>
</tr>
<tr>
<td>5. socialite</td>
<td>5. captain</td>
<td>sassy-snappy</td>
<td>vocalist-guitarist</td>
</tr>
<tr>
<td>6. hairdresser</td>
<td>6. architect</td>
<td>volleyball-football</td>
<td>diva-superstar</td>
</tr>
<tr>
<td>7. nanny</td>
<td>7. financier</td>
<td>cupcakes-pizzas</td>
<td>petite-lanky</td>
</tr>
<tr>
<td>8. bookkeeper</td>
<td>8. warrior</td>
<td>queen-king</td>
<td>charming-affable</td>
</tr>
<tr>
<td>9. stylist</td>
<td>9. broadcaster</td>
<td>waitress-waiter</td>
<td>sister-brother</td>
</tr>
<tr>
<td>10. housekeeper</td>
<td>10. magician</td>
<td>ovarian cancer-prostate cancer</td>
<td>mother-father</td>
</tr>
</tbody>
</table>

Figure 1: **Left** The most extreme occupations as projected on to the she–he gender direction on w2vNEWS. Occupations such as *businesswoman*, where gender is suggested by the orthography, were excluded. **Right** Automatically generated analogies for the pair she-he using the procedure described in text. Each automatically generated analogy is evaluated by 10 crowd-workers to whether or not it reflects gender stereotype.
Fixing Inductive Bias: Debiasing

• We can identify *gendered terms* to determine which *features* contribute to determining differences between them
 • Then, for other *non-gendered terms*, we can compute debiased distances by weighing the gendered features *less*
Bias Amplification

• **Bias Amplification** occurs when unrepresentative data leads a model to learn the wrong features

• **Consider:** What is a chair?

• **Concretely:** if all of your dataset contains barstools as examples of chairs, your model will learn the wrong features
 • e.g., it will only have examples of tall, backless seats near alcohol sources
Bias Amplification: Training
Bias Amplification: Predictions
Reducing Bias Amplification

- Find ratio of predictions made against ground truth labels
- Identify distribution of labels in dataset
- Adjust predicted outputs based on target distribution
Bias in ML and Web Systems

• Bias in data and sampling
 • (social biases, unrepresentative user base)

• Optimizing for a biased objective
 • (bad training)

• Inductive bias
 • (implicit assumptions made by the model itself)

• Bias amplification
 • (the model learns the “wrong” features)
Half-Slide Summary: Dark Web

• The Internet is not “free” for all
 • Government regulations prohibit access to certain websites
 • Sedition laws prohibit certain topics or content

• People may want more privacy
 • Can we really trust soulless corporations to *ethically* collect and maintain data?
 • What if my neighbor sees my browsing history?

• We can use **The Onion Router (TOR)** to access the internet through a sequence of encrypted and relayed channels
 • TOR provides strong privacy *if you assume no one entity controls the majority of networking nodes*
 • TOR has brought with it an underground market of “Dark Web” sites that are used for illicit purposes
Tor

- The Onion Router
- Used to fight traffic analysis

- Idea: like an onion, make your connection have layers
 - Your HTTP traffic gets routed through multiple nodes before hitting an exit node that connects for you
 - Hard to reconstruct who you are because each connection between each node is separately encrypted
How Tor Works: 1

Step 1: Alice's Tor client obtains a list of Tor nodes from a directory server.

Step 3: If at a later time, the user visits another site, Alice's Tor client selects a second random path. Again, green links are encrypted, red links are in the clear.

Tor servers

• Run by volunteers
• There's one in CSE
Tor

• Tor encrypts outgoing data multiple times, like layers of an onion
 • One encryption layer for each step in the relay

• Each layer of encryption is peeled off by a relay node in the network. At each layer:
 • Decrypt the current layer
 • Forward to the next destination
TOR vulnerabilities

• Only the first relay node knows the source IP address
• Only the last relay node knows the destination IP address
• To break anonymity, you need to surveil ALL nodes in the Tor circuit

• Also, all bets are off if you enable JS
 • Or really, any other browser fingerprinting – often, TOR clients will force you to use fixed-size browser windows, no JS, simple CSS, no posting, no cookies, etc. to prevent deanonymization
 • Also run it on a Live CD instance with a RAM disk rather than from durable storage...
Statistical correlation attack

• Let’s say that Elmo and Abby use Tor regularly
 • You control their ISP and collect frequent traffic logs with timestamps

• Also control the ISP for ILoveBigBird.com and DownWithBigBird.org
 • You also collect frequent traffic logs with timestamps

• How can you tell who is pro-BigBird vs anti-BigBird?
 • With enough log data, you can perform statistical correlation attack
 • Remember metadata from yesterday?
Statistical correlation attack: prevention

• Elmo and Abby always transmit data to Tor once per second
• If no data to send, just send NULL or random data
 • Always attempt to give the appearance of traffic so an eavesdropper can’t be sure what you’re doing...

• *More Tor users conducting more activity* on Tor reduces vulnerability
Tor services

• Tor allows users to anonymously publish services
 • E.g., web pages, or a chat server
 • The exit node and target host connect normally... this sounds bad

• Service locations *(rendezvous points)* must be known to clients
 • Even though censors may want to locate, take down services

• Key idea: layer of indirection
 • *Introduction points* are Tor nodes that relay traffic from clients to services
Step 1: Bob picks some introduction points and builds circuits to them.

The advertisement:
• Contains Bob’s public key
• Contains each intro node
• Is signed with Bob’s private key

XYZ is an autogenerated name derived from Bob’s public key

• The downloaded advertisement record tells Alice where to find Introduction Points.
• She further chooses a random Tor node to act as a Rendezvous Point, and connects to it.

All links to *Introduction Points* and *Rendezvous Points* are encrypted, and via Tor; no one can connect the message to Alice’s IP address.

Step 5: Bob connects to the Alice’s rendezvous point and provides her one-time secret.

• We now have a connection where neither Alice nor Bob know each other’s IP addresses
• Why bother with Rendezvous Points? No Tor node should appear to be exclusively responsible for a service.

Distributed hash tables

• How can Alice find the XYZ.onion record in the first place?

• One answer: Ask a directory server
 • Centralized, so easy to take down

• Another answer: Hash-based mapping
 • If N servers, store file foo on server hash(foo) % N
 • What if we need to add a server?
 • File is now mapped to server hash(foo) % (N+1)
Finding Tor services

• Curated lists
 • Reddit
 • Hidden Wiki
 • ... and many others

• Hidden service search engines
 • Ahmia
 • Torch
 • Not Evil
 • ... and many others

• Search engine crawlers on dark web
 • Route crawler GET requests to .onion sites through Tor
Course Wrap Up!

• Thanks for a great semester

• Think of all you have accomplished. Your resume has gone up a level!
 • HTML, CSS front-end
 • Flask-based Python server
 • AWS integration
 • JS and React, complex PL features and asynchronous programming
 • MapReduce Framework from scratch!
 • Raw sockets, threading, reliability and fault tolerance
 • Search engine and IR
 • Databases, SQLite
 • Bash scripting, VMs, containers, virtual environments, Linux utilities

• Completed at double pace and entirely remotely!
 • This is an achievement you should be proud of