
Combining Models

EECS 498
(Remote) Lecture 21

Reminders

• Due next Monday, 4/6
• PC5 (Cooperative Testing) due 4/6
• PC6 (Sprint Review 3) due 4/6, delivered as YouTube video

• Please also upload your raw video to Google Drive (so others can download)
• SR3: Please review group feedback

• No lectures next week
• Instead, you will use the time to review each group’s SR3 video presentation

• PC7 (Final Presentations) will be a scheduled telecon with your team
• Schedule a 30 minute block here:

https://calendar.google.com/calendar/selfsched?sstoken=UVBaMkN5bk9KelVRfGRlZmF1bHR
8Mjk4MTllNjJjODMyODdkODk3MzU4YjNmNWIxZDUyNTI

• Try to have most/all your team members present for that

2

Review: Evaluating ML Models

• Model performance is evaluated with respect to
True Positives, True Negatives, False Positives, and False Negatives

• Evaluated with respect to binary tasks over an evaluation set

• Intent classification: did the model correctly classify intent X?
• NB: weight or average performance on a per-intent basis

• Slot extraction: did the model correctly classify a token as slot y?
• NB: weight or average performance on a per-slot label basis

• We can use TP/TN/FP/FN stats to compute
Precision, Recall, 𝑭𝑭𝟏𝟏 score, and Accuracy

3

Review: True and False Positives

• We can compute a confusion matrix based on the
output of the model for each utterance in the evaluation set

• (can be done on a per-intent or per-slot basis, or averaged)

• From the confusion matrix, we can compute Precision, Recall, and
Accuracy scores

4

Ground-truth Predicted in class X Predicted not in X

Actually in class X 50 45 (True Positives) 40 (True Negatives)

Actually not in class X 50 5 (False Positives) 10 (False Negatives)

Review: Precision, Recall, 𝐹𝐹1, Accuracy

• These scores characterize the mistakes made by a classification model
• Precision

• Fraction of actual in-class values compared to all predicted in-class values
• TP / (TP + FP), also called the Positive Predictive Value

• Recall
• Fraction of predicted in-class values compared to all actual in-class values

• TP / (TP + FN), also called the Sensitivity

• 𝐹𝐹1 score
• Combination of precision / recall to account for both types of error

• p*r / (p + r) = TP / (TP + FP + FN)

• Accuracy
• Fraction of correctly classified vales over all classifications

• (TP + TN) / (TP + TN + FP + FN)

5

Review: Model Evaluation Considerations

• Slot Extraction: Train by labeling portions of utterance
• Yo fam get me a burger.
• O B:person O B:person O B:food

• In larger utterances, most tokens are O
• Do we care as much as Precision/Recall for O tokens?
• Consider: is identifying whether a token is any slot the same as identifying its

slot label?

• Remember: the true and false positives and negatives mean
something in the context of your task. Don’t blindly apply statistics.

6

Review: Datasets and Overfitting

• When evaluating models, we practice a discipline notion of diving
datasets

• Training set Utterances used to compute weights in NN
• Development set Utterances used to fine-tune the NN and debug
• Evaluation set Utterances used to evaluate performance (e.g., F1)

• It is critical that these datasets do not overlap
• We risk overfitting to the training data
• A model is not useful if it’s only super good

at classifying training data…

7

Overfitting in Conversational AI

• Virtual assistants can become overfit:
• Intent Classification

• Crowdsourcing: insufficient diversity from prompt biasing
• e.g., Banking Assistant: what if you only ask for rephrasals that use the work “checking”?

• Insufficient scoping leads to classification failures
• e.g., Banking Assistant: what if you only think of checking/savings, but not about IRA

accounts?

• Slot Extraction
• Insufficient token diversity

• e.g., Banking Assistant: cheques, checks, savings, money market, CD
• Insufficient context diversity

• e.g., Banking Assistant: what if all utterances are of the form “… from X to Y…” instead of “to Y
from X”? (slot ordering may be overfit)

8

• Embeddings are compact, semantics-preserving vector
representations of individual words (or other NLU elements)

• Embeddings are derived from Neural Network weights near the input
layer (called an embeddings layer)

• Example: Word2Vec is trained to predict surrounding words given an
input word in a sentence

Review: Word Embeddings

9

The mouse ran
up the clock.

→
[1, 2, 3, 4, 1, 5]

The 1

Mouse 2

Ran 3

Up 4

Clock 5

Down 6

“ran” : 3

Embedding layer
(random init)

Word2Vec

“the”: 1

“mouse”: 2

“up”: 4

“the”: 1

Review: Word Embeddings

• Embeddings can capture semantic relationships between words
• e.g., for Word2Vec, the network learns words that frequently co-occur within

some small 5-word span

• Dimensionality depends on the size of the embeddings layer

10

Review: Word Embeddings

• Words that are related semantically should be close in the
embedding space

11

Review: Word Embeddings

• Once we move into the embedding space, we desire arithmetic
properties that preserve semantic relationships

• Note: King – Man + Woman
= Queen

12

Review: Bert

• Bert is an advanced language model from we can derive contextual
embeddings

13

Review: Bert

• Input representation consists not only of token-level embeddings, but
also position and label embeddings

• Allows embeddings to capture context (position relative to other tokens) and
semantics (the embeddings must ‘learn’ to compensate in the presence of a
MASK

14

One-Slide Summary: Model Combinations

• Bert is itself a combination of many pieces… How does it work?
• Attention / Transformer
• WordPiece Vocabulary

• NLU pipelines consist of Intent Classification and Slot Extraction
• Slot Mapping comes later, but may or may not involve a model
• Downstream or end-to-end performance can be very different from individual

model performance

15

A Deeper Dive on Bert

• Bert uses WordPiece vocabulary as the input representation
• WordPiece represents pieces of words in sequence

• Pieces of words are mapped to unique vocabulary identifiers (i.e., numbers)
• Allows some robustness against misspellings

• RoBERTa takes this a step further
• FastText is another representation for robustness against misspellings

16

A Deeper Dive on Bert

• WordPiece is an example vocabulary that attempts handling some
amount of out-of-vocabulary tokens

• Consider: words like “Big Mac” or “Deloitte” may not directly map to typical
English words… what if they aren’t present in our vocabulary at training
time?

• Recall: Lexical analysis. How do we break up tokens in an utterance?
• Morphological normalization can help reduce vocabulary size

• WordPiece uses Subwords: frequently-occurring sequences of characters

17

A Deeper Dive on Bert

• Bert: Bidirectional Encoder Representations from Transformers
• Bidirectional: Bert represents a language model that works in both directions

• i.e., left-to-right and right-to-left.
• e.g., Predict X in “… X jumps over the lazy dog” <- only has right-sided context
• Bert can learn from both left- and right-sided context in input sequences

• Encoder: Basically the same thing as an embedding
• Technically, encoders encompass all layers that lead up to the embedding

• Representations: a method for representing data
• An Encoder Representation is like an embedding

• Transformers: A type of neural architecture that
applies well to NLP

• Also, robots in disguise

18

Bert: Bidirectional

• The architecture of Bert allows it
to learn from context on both
sides of each token

• Contextual embeddings

• Transformers enable this
behavior

• For each word, the NN accounts
for the attention it should give to
all other words in the input

19

Bert: Encoder Representations

• An Encoder is a NN is produces embeddings
• In the case of Bert, this produces a robust contextual representation by accounting

for
• Positional information of each token (i.e., is it the 1st, 2nd, 3rd, etc. word in the sentence?)
• Encoding information from other tokens in the sequence

• As the model trains, these encodings learn from contexts in which the tokens appear

• In particular, Bert’s Encoders use self-attention
• Attention is a formal notion of relative importance
• Recall: RNNs consider each word at a time – each inference step (usually) has

limited information about other tokens
• The Attention mechanism allows learning a representation of importance

• “The cat ate its food.” <- Attention learns: “cat” important for “its”; “ate” important for “food”

20

Bert: Encoder Representations and Attention

• Bert uses a self-attention mechanism
• Attention consists of a separate NN (a sub-graph of Bert as a whole)

• The NN learns relative importance of words in a sequence over a whole corpus
• The NN can attend to both left and right context (bidirectional)

• Predicting “this” doesn’t really
depend on “an” or “example”

• “is” is kind of important
• “example” depends on “an”

and “is” -> hinting at correct
sequence of words

• Attention critically important in NLP!
• Translation makes use of attention

21

Bert: Attention Explained More

22

• The self-attention mechanism
causes learned embeddings to
reflect attention

• That is, the embeddings for one
token are forced to account for
the attention given to other
tokens in the sequence

• The first Transformer (the
Encoder) is fed input from all
tokens in the sequence

• Self-attention allows it to encode
while modulating for relative
importance

Bert: What is a Transformer?

• Bert uses Transformers to help
learn context from sequences

• A Transformer consists of an
Encoder and Decoder with self-
attention

• Recall: Encoder is a NN that produces
some embedding

• Decoder: turns an embedding vector
into a vocabulary identifier

• Attention: a sub-NN that allows
learning relative importance of tokens
in a sequence

23

Bert: Transformers

24

Bert: Summary

• We have discussed Bert as a mechanism for
acquiring robust contextual embeddings

• In practice, Bert can do a lot more
• The word embeddings were more of a nice “side effect”

of the architecture
• Sentence Prediction

• Given one sequence of words, predict the next sequence
• Question-answering

• Learns relationships between question sequence inputs and
answer sequence outputs

• Bert is unwieldy
• 11GB of VRAM to run?

25

Bert: Semantic Entailment

26

Bert: Logical Analysis

27

Bert: Sentence Embeddings

• The [CLS] token is meant to
represent the start of a sentence

• Consider: The model supposedly
learns context in part from position

• Every sentence “starts” with [CLS]

• No matter what sentence is given,
[CLS] always involves context
learned from every other word

• Thus, the embeddings for [CLS] are
a rich representation of the whole
sentence

28

Sentence Embeddings in General

• Embed sentences into
vector space

• Useful for comparing
sentences semantically

• Word embeddings are
used in addition to
positional information

29

Bert: Shortcomings

• Bert’s language modeling assumes independence among MASK
tokens

• Recall: Bert operates by MASKing some tokens, forcing the embeddings to
reflect context

• Problem: if multiple MASK tokens appear in a sentence, their ordering and
relationship are assumed irrelevant by BERT

• “I have to fly from MASK1 to MASK2” <- wouldn’t make sense if the MASKed tokens were
“Ithaca” and “Syracuse”

• Bert’s input leverages WordPiece
• Problem: Limited robustness against misspellings

30

XLNet: Even more state-of-the-art?

• Eliminate independence assumption with
“Permutation Language Modeling”

• Basically, consider predictions of multiple
permutations of words in a sequence

• Even more complex
• The model learns multiple ways to predict each

sequence given different parts of the context

(that’s $160k to train)
(in contrast, Bert used 64 TPUs for 4 days
for a “mere” $14k)

31

Multiple Models in NLU Pipeline

• Intent Classification is often performed with SVM or FastText models
• Use Multi-class Support Vector Machine to decide amongst multiple intents

• tf-idf, n-gram frequency, embeddings, all potential features for SVM
• Binary classifier for every pair of intents

• “is account_balance” vs. “is open_credit”, etc.
• Simple vote: increase an intent’s class count by 1 each time it wins one of the binary classifiers; take

the highest as the intent label
• Advantage: SVM is fast to train and infer; accuracy > 90% on standard workloads

• FastText used to classify sequences into “topics”
• Just create “topics” to be intents
• Model takes sequences of words as inputs, embeds them,

trained to select among multiple classes
• Advantage: Fast (with pretrained embeddings); more accurate
• Robust against misspellings

• Words embedded in 3-character sequences:
Kevin becomes: <Ke, Kev, evi, vin, in>

32

Stateful Classification

• Clinc
• Each state associated with a separate intent classifier

• Create an SVM/FastText model with each outgoing edge as a possible intent class
• Advantage: State makes it easier to discern between intents

• There are typically fewer intent classes to choose from in a given state

• DialogFlow
• Coerce model outputs using Contexts

• Classification model probabilities are changed based on Context
• e.g., “2x more likely” to choose intent A over B in context C

• Advantage: Reduced overall training (there’s no per-state classifier to train)

• Rasa
• Touted as “stateless”

• You give it training data that captures state (e.g., which intents should come next)
• Advantage: Purely example based. Rasa scales well as a resule

33

Slot Extraction

• Can be thought of as a Sequence-to-Sequence task
• Turn an utterance into an IOB representation

• Yo fam get me a burger.
• O B:person O B:person O B:food

• Embed words, train a model to learn how to predict I, O, or B for each token

• Clinc
• Per-competency slot extraction

• Currently using Glove embeddings (olde but fast)
• Bert embeddings improve accuracy (but radically increase training time)

• DialogFlow and Rasa
• Appears per-intent, although model details are not immediately obvious

34

Summary

• We talked about Bert
• Transformer, Attention, and WordPiece

• We talked a bit more about models under
the hood

• SVM/FastText for robust intent classification
• Bert-like DNN for slot filling

• Next class: Ethics in NLP
• Why is Google biased?

35

	Combining Models
	Reminders
	Review: Evaluating ML Models
	Review: True and False Positives
	Review: Precision, Recall, 𝐹 1 , Accuracy
	Review: Model Evaluation Considerations
	Review: Datasets and Overfitting
	Overfitting in Conversational AI
	Review: Word Embeddings
	Review: Word Embeddings
	Review: Word Embeddings
	Review: Word Embeddings
	Review: Bert
	Review: Bert
	One-Slide Summary: Model Combinations
	A Deeper Dive on Bert
	A Deeper Dive on Bert
	A Deeper Dive on Bert
	Bert: Bidirectional
	Bert: Encoder Representations
	Bert: Encoder Representations and Attention
	Bert: Attention Explained More
	Bert: What is a Transformer?
	Bert: Transformers
	Bert: Summary
	Bert: Semantic Entailment
	Bert: Logical Analysis
	Bert: Sentence Embeddings
	Sentence Embeddings in General
	Bert: Shortcomings
	XLNet: Even more state-of-the-art?
	Multiple Models in NLU Pipeline
	Stateful Classification
	Slot Extraction
	Summary

