
BLS, Integrations,
DialogFlow, and Rasa

Lecture 13

Review: NLP Fundamentals

• Tokenization is the process of splitting input strings into sequences of
semantic tokens
• Tokens should be lexemes in some language's lexicon (e.g., words)

• Stemming is a process of normalizing tokens
• Remove some suffices
• Allows easier comparison between words in an utterances
• Allows more easily establishing relationships between words

• Lemmatization is the process of more easily relating words
• Unconjugate verbs, etc.

• Resources like WordNet are established sources of semantic
relationships

Review: NLP Fundamentals

• A Language Model is a probabilistic approach to predicting sequences of
words
• Text generation (e.g., the most likely word to use next, given a sequence)
• ASR classification (e.g., the most likely transcription of audio)
• Intent classification (e.g., the most likely intent given a sequence)

• We use Part-of-speech tagging to map individual tokens to underlying
semantic information (e.g., verbs, nouns)
• Slot labeling is a POS tagging problem: identify which tokens are slots

• Then, classify which slot that token belongs to

• Statistics like tf-idf are used to establish relative importance of words
• Documents can be thought of as utterances
• Terms can be thought of as tokens

Review: Crowdsourcing

• Crowdsourcing is an approach to rapidly gathering data
• Mechanical Turk (mTurk) is a common platform for crowdsourcing
• You give a prompt to a user; workers complete them for money
• (Clinc integrates mTurk, but you can use it separately)

• Crowdworkers are highly variable
• They're paid chump change ($0.10 - $0.20 per task)
• Incentivized to complete as many as possible

• Crowdworkers complete Human Intelligence Tasks (HITs)

Review: Crowdsourcing

• Crowdsourcing requires trial-and-error
• Brevity in prompts is preferred

• Don't gather all data at once—try multiple prompts

• Crowdworkers are easily biased
• Prompt: "Rephrase 'What is the capitol of Florida?' without using X."

Crowdsourcing

• Clinc platform has crowdsourcing feature built-in
• (and free to you)

• If you use DialogFlow or Rasa, you'll need to crowdsource yourself
• Work with IAs to get mTurk up and running

• We can also set up internal crowdsourcing (i.e., within the class)

• Curation still required
• Don't just use crowdsourced data wholesale

• Check for bots, cheaters, and low variability of responses

One-Slide Summary: DF/Rasa/Integrations

• Conversational AI platforms generally are web-based tools that
provide a way to design:
• Intents for classifying text
• Slot extraction (slot-value pairing, entity extraction) for pulling semantics
• Dialogue tracking (states, contexts) for handling multiple "turns"

• DialogFlow is a Google platform
• Design intents with contexts, use WebHook for "fulfillment" of business logic

• Rasa is an open-source set of command-line tools
• Design intents and "stories", use Actions for business logic

• Web services connect frontends, backends, and virtual assistants

Conversational AI Platforms

• Totally possible to have a simple command-line tool do this for us
• We don't want to be constrained by a single system
• How do others use a virtual assistant?

• Typically, platforms both:
• Expose an API (engaged by your front-end)
• Engage an API (engages your back-end)

• Details are platform-specific
• But generally accomplish the same stuff

Web Services crash course

• So you've built a service
• (e.g., a command-line virtual assistant)
• How do you get others to be able to use it?

• Keep the service running, allow remote connections to engage it
• Think: what happens when you go google.com?

• So: build some front-end, send a message to the computer running
your service
• Get a response, display it as appropriate

Web services crash course

• How is it done in practice?
• Send JSON objects back and forth

{
"query" : "What's my account balance?",
"conversation_id": "Kevin",
other_metadata: { … },

}

{
"response" : "U got $1 sry",
"conversation_id": "Kevin",
"intent": "account_balance"
...

}

Web Services Crash Course

• Conceptually identical to running a program with lots of arguments
• ./chatbot.exe --query="What's my account balance?" --name="Kevin"

• Remote service parses JSON payload, pushes it through a platform,
and responds accordingly
• Clinc, DialogFlow, Rasa all operate web services based on JSON

• Key takeaway:
• Web service helps with scale and access to the service (e.g., a chatbot)

Comparing Platforms

• Large software systems come with various tradeoffs

• For Conversational AI, platforms balance
• Speed of development

• Ease of experience design

• Testing

• Training time

• End-user experience

Clinc

• You design a state graph that models flow through a conversation
• A state encompasses an intent

• Intent classification model is trained via examples per transition between
states

• The platform is reached remotely via the /v1/query API endpoint
• Your front-end uses this API (e.g., website, Alex, etc.)

• The platform engages your BLS on a per-utterance basis
• Move through the state graph on each utterance

Google DialogFlow

• DialogFlow allows specifying a list of intents

Google DialogFlow

• No formal notion of state; instead, DialogFlow uses contexts

DialogFlow: Context

• Similar to a Clinc competency, a DialogFlow context is a set of intents
that share slots (entities/parameters)

• You can design responses and intents knowing that you can extract
and fill slots using contexts

• Like with an intent or state, multiple contexts can become active
when an intent is matched

DialogFlow Contexts

• Contexts bias intent classification
• Input contexts: helps to decide between potentially-ambiguous intents

• "car" vs. "truck" in a vehicle-shopping bot

• Output contexts: When an intent is classified, assign set of output contexts
• "select_vehicle" in a vehicle-shopping bot

• Contexts also support timing
• Default 20 minutes

• 5 conversational turns

DialogFlow: Fulfillment

• (same as Business Logic)

• Basically, you run a web service that "fulfills" a request

• Set contexts, set intents, set responses, etc.

• You can also create fulfillment "Functions"
that are integrated into DialogFlow

Rasa

• Open source Conversational AI platform

• Lots of plaintext, command-line interactions

• Intents and slots as expected
• Define a list of intents and corresponding examples

• Label a few example slots within each example

• Rasa runs as a background service that you run locally

Rasa: Domains

• A Conversational AI built in Rasa
is defined by a domain
• Provides a notion of "scope" for

what the virtual assistant does

• The domain lists out all the
intents, slots, responses

Rasa: Intents

• Defined in MarkDown files

• Just a big list of intent names and examples

Rasa: Slots

• Defined in domain, provided in examples

• Rasa supports types of slots
• List
• String
• Float
• Range
• Enumerated

• Rasa also works with a variety of channels
• (slots can be strange... e.g., JSON objects)

Rasa: Dialogue tracking with Stories

• Instead of states, Rasa uses stories

• You provide examples of sequences of intents and actions to take
• Rasa learns sequences of intents to classify based on those examples

Rasa: Actions

• (same as business logic and fulfillment)

• Actions are a kind of special "intent" that can get classified
• The virtual assistant can predict going to perform an action

• You indicate Actions in Stories

• You can write a web service that is engaged
• You need an "action" in your user stories

Conversational Platforms: Summary

• These platforms provide coarse abstractions for modeling conversations

• They assume conversations take place turn-at-a-time
• Intent-based
• Slots to extract
• Etc.

• The developer still needs to:
• Model the conversation
• Collect and curate the training data
• Write code to do real stuff (i.e., front end and business logic)

