
EECS 483 — Review Set 4

March 16, 2018

1 Runtime Organization

1. In class we discussed partitioning memory into code, static data, stack
and heap areas. In at most three paragraphs, support or refute the claim
that any program that could be compiled for such a four-way partition
could also be compiled for a model in which memory is divided up into
code, static data and heap areas only. Your argument should consider
the compilation of global variables, local variables, function calls, and
dynamically-allocated objects.

2. Consider the addition of Java- or C++-style exception handling to Cool.
For each of the following sorts of variables, separately indicate the effect
of raising an exception on its lifetime and also its scope.

(a) local variables

(b) function arguments

(c) dynamically-allocated objects

2 Stack Discipline

1. Consider the following incorrect code generation rule for a function defi-
nition:

cgen(def f(x1, ..., xn) = e) =

f_entry:

push ra

mov fp <- sp

cgen(e)

ra <- top

add sp <- sp z

return

Give a simple program that will behave incorrectly when compiled using
the above rule.

1



2. Consider the following two alternate definitions for the NumTemps func-
tion, NT :

(a) NT (e1 + e2) = max(NT (e1), 2 + NT (e2))

(b) NT (e1 + e2) = max(1 + NT (e1), NT (e2))

For each alternate definition, indicate in at most one paragraph what
would happen if that definition were used for code generation.

3. In at most one paragraph, explain how code generation would change if
function parameters were pushed on the stack in the opposite order of
what we described in class.

4. Consider the following function prologue:

Main.test??: mov fp <- sp

pop r0

li r2 <- 6

sub sp <- sp r2

push ra

push fp

push r0

Ignoring optimizations, to which of the following function definition(s)
could it correspond?

(a) test34(x : Int, y : Int, z : Int) : Int {

let a : Int, b : Int, c : Int, d : Int in

x + y + z + a + b + c + d

} ;

(b) test24(x : Int, y : Int) : Int {

let a : Int, b : Int, c : Int, d : Int in

x + y + a + b + c + d

} ;

(c) test22(x : Int, y : Int) : Int {

let a : Int, b : Int in

x + y + a + b

} ;

(d) test31(x : Int, y : Int, z : Int) : Int {

let a : Int in

x + y + z + a

} ;

2



3 Typechecking Rules

1. Suppose we change the behavior of while so that it returns the number of
times the loop body is executed. Write the typing rule for this alternate
while expression.

2. Consider the following alternate typing rule for if. Indicate whether it is
unsound (i.e., allows unsafe programs to proceed to code generation) or
incomplete (i.e., mistakenly prevents safe programs from being processed),
both, or neither. If it is incomplete and/or unsound, give a program that
demonstrates as much.

O ` e0 : Bool
O ` e1 : T
O ` e2 : T

O ` if e0 then e1 else e2 : lub(Bool, T )

4 Dataflow Analysis

1. Consider the following control-flow graph:

3



Consider carrying out constant propagation on the graph with respect to
a variable x. You must map each of the following statements to exactly
one of the basic blocks (B1 . . . B4):

(a) x← 1

(b) x← x + 1

(c) x← x− 2

(d) x← 3

... such that the resulting dataflow analysis will only have x = > (i.e.,
“unknown”) on one edge (the edge leaving the Start node). (Do not worry
about the if conditional.)

2. Consider live variable analysis and constant propagation. Construct the
smallest control-flow graph you can (in terms of number of nodes) such
that:

• Each node contains only a single assignment of the form x ← 1 (or
2, or 3, etc.)

• The start node contains x← 0

• There is an edge in the control flow graph such that liveness concludes
x is dead on that edge but constant propagation concludes x = > on
that edge.

• The control flow graph is acyclic.

4


